The present study was designed to examine (1) whether there are vasodilator fibres in the masseter muscle, and (2) if there are, to establish the neural pathways mediating these responses in urethane-anaesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity-and frequency-dependent increases of the blood flow in the masseter muscle (MBF) and lower lip (LBF). Increases in both the MBF and LBF evoked by the LN stimulation were reduced by hexamethonium in a dose-dependent manner (1-10 mg kg −1 ). Pretreatment with phentolamine or propranolol at a dose of 100 µg kg −1 had no effect on the increases in either MBF or LBF evoked by LN stimulation. Pretreatment with atropine (100 µg kg −1 ) significantly reduced the MBF increase induced by LN stimulation, but not that in the LBF. The sectioning of the superior cervical sympathetic trunk did not affect the responses. MBF increases occurred with electrical stimulation of the trigeminal ganglion, and these increases were significantly reduced by the administration of hexamethonium and atropine. Lidocaine microinjection into the trigeminal spinal nucleus or salivatory nuclei caused a significant attenuation of the LN-induced MBF increases. When wheat germ agglutinin-horseradish peroxidase (WGA-HRP) was injected into the masseter muscle, labelled neurones were abundantly observed in the otic ganglion. The present study indicates that there are parasympathetic cholinergic and noncholinergic vasodilator fibres originating from cell bodies in the otic ganglion in the rat masseter muscle. The MBF increase evoked by activation of the parasympathetic fibres occurred via the trigeminal mediated reflex, suggesting that the novel parasympathetic vasodilator response may play an important role in the regulation of the haemodynamics of jaw muscles.
The present study was designed to examine the effect of sympathetic tonic activity on parasympathetic vasodilation evoked by the trigeminal-mediated reflex in the masseter muscle in urethane-anesthetized rats. Sectioning of the superior cervical sympathetic trunk (CST) ipsilaterally increased the basal level of blood flow in the masseter muscle (MBF). Electrical stimulation of the peripheral cut end of the CST for 2 min using 2-ms pulses ipsilaterally decreased in a dependent manner the intensity (0.5-10 V) and frequency (0.1-5 Hz) of the MBF. The CST stimulation for 2 min at <0.5 Hz with 5 V using 2-ms pulses seems to be comparable with the spontaneous activity in the CST fibers innervating the masseter vasculature, because this stimulation restored the basal level of the MBF to the presectioned values. Parasympathetic vasodilation evoked by electrical stimulation of the central cut end of the lingual nerve in the masseter muscle was markedly reduced by CST stimulation for 2 min with 5 V using 2-ms pulses in a frequency-dependent manner (0.5-5 Hz). Intravenous administration of phentolamine significantly reduced the vasoconstriction induced by CST stimulation in a dose-dependent manner (0.1-1 mg/kg), but pretreatment with either phentolamine or propranolol failed to affect the sympathetic inhibition of the parasympathetic vasodilation. Our results suggest that 1) excess sympathetic activity inhibits parasympathetic vasodilation in the masseter muscle, and 2) alpha- and beta-adrenoceptors do not contribute to sympathetic inhibition of parasympathetic vasodilation, and thus some other types of receptors must be involved in this response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.