Spiking neural networks (SNNs) more closely mimic the human brain than artificial neural networks (ANNs). For SNNs, time-to-first-spike (TTFS) encoding, which represents the output values of neurons based on the timing of a single spike, has been proposed as a promising model to reduce power consumption. Adversarial attacks that can lead ANNs to misrecognize images have been reported in many studies. However, the characteristics of TTFS-based SNNs trained using a backpropagation algorithm against adversarial attacks have not yet been clarified. In particular, the dependence of the robustness against adversarial attacks on spike timings has not been investigated. In this study, we investigated the robustness of SNNs against adversarial attacks and compared it with that of an ANN. We found that SNNs trained with the appropriate temporal penalty settings are more robust against adversarial images than ANNs.
The spiking neural network (SNN) has been attracting considerable attention not only as a mathematical model for the brain, but also as an energy-efficient information processing model for real-world applications. In particular, SNNs based on temporal coding are expected to be much more efficient than those based on rate coding, because the former requires substantially fewer spikes to carry out tasks. As SNNs are continuous-state and continuous-time models, it is favorable to implement them with analog VLSI circuits. However, the construction of the entire system with continuous-time analog circuits would be infeasible when the system size is very large. Therefore, mixed-signal circuits must be employed, and the time discretization and quantization of the synaptic weights are necessary. Moreover, the analog VLSI implementation of SNNs exhibits non-idealities, such as the effects of noise and device mismatches, as well as other constraints arising from the analog circuit operation. In this study, we investigated the effects of the time discretization and/or weight quantization on the performance of SNNs. Furthermore, we elucidated the effects the lower bound of the membrane potentials and the temporal fluctuation of the firing threshold. Finally, we propose an optimal approach for the mapping of mathematical SNN models to analog circuits with discretized time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.