Nitric oxide (NO) physiologically stimulates the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) to decrease intracellular Ca(2+) concentration and relax cardiac, skeletal and vascular smooth muscle. Here, we show that NO-derived peroxynitrite (ONOO(-)) directly increases SERCA activity by S-glutathiolation and that this modification of SERCA is blocked by irreversible oxidation of the relevant cysteine thiols during atherosclerosis. Purified SERCA was S-glutathiolated by ONOO(-) and the increase in Ca(2+)-uptake activity of SERCA reconstituted in phospholipid vesicles required the presence of glutathione. Mutation of the SERCA-reactive Cys674 to serine abolished these effects. Because superoxide scavengers decreased S-glutathiolation of SERCA and arterial relaxation by NO, ONOO(-) is implicated as the intracellular mediator. NO-dependent relaxation as well as S-glutathiolation and activation of SERCA were decreased by atherosclerosis and Cys674 was found to be oxidized to sulfonic acid. Thus, irreversible oxidation of key thiol(s) in disease impairs NO-induced relaxation by preventing reversible S-glutathiolation and activation of SERCA by NO/ONOO(-).
Background-Acute aortic dissection (AAD) is a life-threatening vascular disease without effective pharmaceutical therapy. Matrix metalloproteinases (MMPs) are implicated in the development of chronic vascular diseases including aneurysm, but the key effectors and mechanism of action remain unknown. To define further the role of MMPs in AAD, we screened circulating MMPs in AAD patients, and then generated a novel mouse model for AAD to characterize the mechanism of action. Methods and Results-MMP9 and angiotensin II were elevated significantly in blood samples from AAD patients than in those from the patients with nonruptured chronic aortic aneurysm or healthy volunteers. Based on the findings, we established a novel AAD model by infusing angiotensin II to immature mice that had been received a lysyl oxidase inhibitor, -aminopropionitrile monofumarate. AAD was developed successfully in the thoracic aorta by angiotensin II administration to -aminopropionitrile monofumarate-treated wild-type mice, with an incidence of 20%, 80%, and 100% after 6, 12, and 24 hours, respectively. Neutrophil infiltrations were observed in the intima of the thoracic aorta, and the overexpression of MMP9 in the aorta was demonstrated by reverse transcription polymerase chain reaction, gelatin zymography, and immunohistochemistry. The incidence of AAD was reduced significantly by 40% following the administration of an MMP inhibitor and was almost blocked completely in MMP Ϫ/Ϫ mice without any influence on neutrophil infiltration. Neutrophil depletion by injection of anti-granulocyte-differentiation antigen-1 (anti-Gr-1) antibody also significantly decreased the incidence of AAD. Conclusions-These data suggest that AAD is initiated by neutrophils that have infiltrated the aortic intima and released MMP9 in response to angiotensin II. (Circulation. 2012;126:3070-3080.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.