Poly-p-xylylene films have been utilized as protective and barrier layers for gases and solvents on electronic and implantable devices. Here we report a new approach to create highly permeable and selective nanofiltration membranes coated with microporous poly-p-xylylene nanofilms fabricated through a dry chemical vapor deposition process by using [2.2]paracyclophanes derivatives on ultrafiltration membranes. The introduction of crosslinking points into rigid poly-p-xylylenes enhanced microporosity and mechanical strength due to insufficient packing and depression of structural relaxation among polymer chains in three-dimensional networks. Crosslinked nanofilms with thicknesses down to 50 nm showed outstanding permeability for water and alcohols at a pressure difference of 0.5 MPa and exhibited higher rejection ratios for water-soluble organic dyes than non-crosslinked nanofilms. Poly-p-xylylene nanofilms also showed an excellent blocking property for non-polar organic solvent permeation through specific interaction of hydrophilic pores with organic solvents.
Herein, we report the nanofiltration performance of poly(p-xylylene) thin films with imidazole side chains that were deposited onto commercial polyethersulfone ultrafiltration membranes using a chemical vapor deposition process. The resulting thin films with a few tens of nanometers exhibited water permeation under a pressure difference of 0.5 MPa and selectively rejected water-soluble organic dyes based on their molecular sizes. Additionally, thin flaky ZIF-L crystals (Zn(mim)2·(Hmim)1/2·(H2O)3/2) (Hmim = 2-methylimidazole) formed on the surface of imidazole-containing poly(p-xylylene) films, and the composite films demonstrated the ability to adsorb methylene blue molecules within the cavities of ZIF-L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.