We consider the singular limit problem for the Cauchy problem of the (Patlak–) Keller–Segel system of parabolic-parabolic type. The problem is considered in the uniformly local Lebesgue spaces and the singular limit problem as the relaxation parameter $$\tau $$
τ
goes to infinity, the solution to the Keller–Segel equation converges to a solution to the drift-diffusion system in the strong uniformly local topology. For the proof, we follow the former result due to Kurokiba–Ogawa [20–22] and we establish maximal regularity for the heat equation over the uniformly local Lebesgue and Morrey spaces which are non-UMD Banach spaces and apply it for the strong convergence of the singular limit problem in the scaling critical local spaces.
We show the finite time blow up of a solution to the Cauchy problem of a drift-diffusion equation of a parabolic-elliptic type in higher space dimensions. If the initial data satisfies a certain condition involving the entropy functional, then the corresponding solution to the equation does not exist globally in time and blows up in a finite time for the scaling critical space. Besides there exists a concentration point such that the solution exhibits the concentration in the critical norm. This type of blow up was observed in the scaling critical two dimensions. The proof is based on the profile decomposition and the Shannon inequality in the weighted space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.