Bose-Einstein condensation has been realized in dilute atomic vapors. This achievement has generated immerse interest in this field. Presented is a review of recent theoretical research into the properties of trapped dilute-gas Bose-Einstein condensates. Among them, stability of Bose-Einstein condensates confined in traps is mainly discussed. Static properties of the ground state are investigated by use of the variational method. The anlysis is extended to the stability of two-component condensates. Time-development of the condensate is well-described by the Gross-Pitaevskii equation which is known in nonlinear physics as the nonlinear Schrödinger equation. For the case that the inter-atomic potential is effectively attractive, a singularity of the solution emerges in a finite time. This phenomenon which we call collapse explains the upper bound for the number of atoms in such condensates under traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.