The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 can induce transdifferentiation of various cells into metaxylem-and protoxylem-like vessel elements, respectively, in Arabidopsis and poplar. A dominant repression of VND6 and VND7 specifically inhibits metaxylem and protoxylem vessel formation in roots, respectively. These findings suggest that these genes are transcription switches for plant metaxylem and protoxylem vessel formation. Xylem vessels, a conductive component of the vascular tissues in plants, are found throughout the plant body. To colonize the land, plants have evolutionarily developed different types of xylem vessels that function in the long-distance transport of water, various nutrients, and signaling molecules throughout their life (Raven et al. 1999). Two types of vessels mature in characteristic positions within protoxylem and metaxylem of the primary xylem tissue that differentiates from the procambium during the early ontogeny of a plant. The protoxylem vessels, which commonly have annular and spiral thickenings, mature before the surrounding organs have elongated. These are frequently destroyed by the extension of the surrounding tissues. The metaxylem vessels, which usually have reticulate and pitted thickenings, mature after the surrounding organs complete their growth. In contrast to protoxylem vessels, they are not destroyed, and constitute the water-conducting tubes of the mature plant (Esau 1977). In Arabidopsis roots, two protoxylem vessels are typically formed at the outermost position of the vascular system, between which three to four metaxylem vessels develop (Supplementary Fig. S1).Recent forward genetic and molecular biological approaches have revealed several aspects of xylem formation that are affected by several key genes (Ye 2002;Fukuda 2004). These genes are related to auxin transport and signaling, and include PINFORMED1 (Gälweiler et al. 1998) and MONOPTEROS (Przemeck et al. 1996) . However, the hierarchical genetic control of differentiation of individual xylem cells is still poorly understood. In this study, we identified VND6 and VND7, which belong to plant-specific transcription factors, NAC-domain proteins that can induce transdifferentiation of various types of cells into metaxylemand protoxylem-like vessel elements, respectively. It is suggested that VND6 and VND7 are transcription switches for plant metaxylem and protoxylem vessel formation, respectively. Results and DiscussionWe have uncovered an expression profile of 9000 genes during xylem vessel element differentiation in an in vitro Zinnia cell culture (Demura et al. 2002). To gain an expression profile of xylem cell-differentiation-related genes in Arabidopsis, we established an in vitro ...
Secondary walls in fibers and tracheary elements constitute the most abundant biomass produced by plants. Although a number of genes involved in the biosynthesis of secondary wall components have been characterized, little is known about the molecular mechanisms underlying the coordinated expression of these genes. Here, we demonstrate that the Arabidopsis thaliana NAC (for NAM, ATAF1/2, and CUC2) domain transcription factor, SND1 (for secondary wall-associated NAC domain protein), is a key transcriptional switch regulating secondary wall synthesis in fibers. We show that SND1 is expressed specifically in interfascicular fibers and xylary fibers in stems and that dominant repression of SND1 causes a drastic reduction in the secondary wall thickening of fibers. Ectopic overexpression of SND1 results in activation of the expression of secondary wall biosynthetic genes, leading to massive deposition of secondary walls in cells that are normally nonsclerenchymatous. In addition, we have found that SND1 upregulates the expression of several transcription factors that are highly expressed in fibers during secondary wall synthesis. Together, our results reveal that SND1 is a key transcriptional activator involved in secondary wall biosynthesis in fibers.
SUMMARYThe Arabidopsis thaliana NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), acts as a key regulator of xylem vessel differentiation. In order to identify direct target genes of VND7, we performed global transcriptome analysis using Arabidopsis transgenic lines in which VND7 activity could be induced post-translationally. This analysis identified 63 putative direct target genes of VND7, which encode a broad range of proteins, such as transcription factors, IRREGULAR XYLEM proteins and proteolytic enzymes, known to be closely associated with xylem vessel formation. Recombinant VND7 protein binds to several promoter sequences present in candidate direct target genes: specifically, in the promoter of XYLEM CYSTEINE PEPTIDASE1, two distinct regions were demonstrated to be responsible for VND7 binding. We also found that expression of VND7 restores secondary cell wall formation in the fiber cells of inflorescence stems of nst1 nst3 double mutants, as well as expression of NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3, however, the vessel-type secondary wall deposition was observed only as a result of VND7 expression. These findings indicated that VND7 upregulates, directly and/or indirectly, many genes involved in a wide range of processes in xylem vessel differentiation, and that its target genes are partially different from those of NSTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.