Traditional approaches for the screening of cognitive function are often based on paper tests, such as Mini-Mental State Examination (MMSE), that evaluate the degree of cognitive impairment and provide a score of patient’s mental ability. Procedures for conducting paper tests require time investment involving a questioner and not suitable to be carried out frequently. Previous studies showed that dementia impaired patients are not capable of multi-tasking efficiently. Based on this observation an automated system utilizing Kinect device for collecting primarily patient’s gait data who carry out locomotion and calculus tasks individually (i.e., single-tasks) and then simultaneously (i.e., dual-task) was introduced. We installed this system in three elderly facilities and collected 10,833 behavior data from 90 subjects. We conducted analyses of the acquired information extracting 12 features of single- and dual-task performance developed a method for automatic dementia score estimation to investigate determined which characteristics are the most important. In result, a machine learning algorithm using single and dual-task performance classified subjects with an MMSE score of 23 or lower with a recall 0.753 and a specificity 0.799. We found the gait characteristics were important features in the score estimation, and referring to both single and dual-task features was effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.