High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.
Transposable elements (TEs) have played important roles in the evolution of genes and genomes of higher eukaryotes. Among the TEs in the rice genome, miniature inverted-repeat transposable elements (MITEs) exist at the highest copy number. Some of MITEs in the rice genome contain poly(A) signals and putative cis-acting regulatory domains. Insertion events of such MITEs may have caused many structural and functional changes of genomes. The genomewide examination of MITE-derived sequences could elucidate the contribution of MITEs to gene evolution. Here we report on the MITEs in the rice genome that have contributed to the emergence of novel genes and the expansion of the sequence diversity of the genome and mRNAs. Of the MITE-derived sequences, approximately 6000 were found in gene regions (exons and introns) and 67,000 in intergenic regions. In gene regions, most MITEs are located in introns rather than exons. For over 300 protein-coding genes, coding sequences, poly(A) sites, transcription start sites, and splicing sites overlap with MITEs. These sequence alterations via MITE insertions potentially affect the biological functions of gene products. Many MITE insertions also exist in 5'-untranslated regions (UTRs), 3'-UTRs, and in the proximity of genes. Although mutations in these non-protein coding regions do not alter protein sequences, these regions have key roles for gene regulation. Moreover, MITE family sequences (Tourist, Stowaway, and others) are unevenly distributed in introns. Our findings suggest that MITEs may have contributed to expansion of genome diversity by causing alterations not only in gene functions but also in regulation of many genes.
The breeding of japonica varieties with erect-pose panicle (EP) has recently progressed in the northern part of China, because these varieties exhibit a far higher grain yield than the varieties with normal-pose panicle (NP). A genetic analysis using the F(2) population from the cross between Liaojing5, the first japonica EP variety in China, and the Japanese japonica NP variety Toyonishiki revealed that EP is governed by a single dominant gene EP. Based on previous studies, map-based cloning of EP locus was conducted using Liaojing5, Toyonishiki, their F(2) population, and a pair of near-isogenic lines for EP locus (ZF14 and WF14) derived from the cross between the two varieties; consequently, the STS marker H90 was found to completely cosegregate with panicle pose. The H90 is located in the coding sequence AK101247 in the database, and the AK101247 of Liaojing5 has a 12 bp sequence in exon 5 replaced with a 637 bp sequence of its wild type allele. It was therefore considered that the AK101247 encodes the protein of the wild type allele at EP locus, and that the sequence substitution in exon 5 of Liaojing5 is crucial for expression of the EP phenotype. The effects of EP gene on agronomic traits were investigated using two pairs of near-isogenic lines (ZF6 vs. WF6 and ZF14 vs. WF14) derived from the cross between the two varieties. Experimental results showed that EP gene markedly enhanced grain yield, chiefly by increasing number of secondary branches and number of grains on the secondary branch. EP gene also produced a remarkable increase in grain density.
Understanding the genetic basis of reproductive barriers between species has been a central issue in evolutionary biology. The locus in rice causes hybrid sterility and is a major reproductive barrier between two rice species, and The-derived allele (denoted ) on the locus causes preferential abortion of gametes with its allelic alternative (denoted ) in/ heterozygotes. Here, we used mutagenesis and screening of fertile hybrid plants to isolate a mutant with an allele, , which does not confer sterility in the/ and / hybrids. We found that the causal mutation of the allele was a deletion in the peptidase-coding gene (denoted "") in the locus of No orthologous genes of were found in the genome. Transformation experiments indicated that the introduction of in carriers of the allele did not induce sterility. In / heterozygotes, the insertion of led to sterility, suggesting that complemented the loss of the functional phenotype of the mutant and that multiple factors are involved in the phenomenon. The polymorphisms caused by the lineage-specific acquisition or loss of the gene were implicated in the generation of hybrid sterility. Our results demonstrated that artificial disruption of a single gene for the reproductive barrier creates a "neutral" allele, which facilitates interspecific hybridization for breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.