We propose an occlusion compensation method for optical see-through head-mounted displays (OST-HMDs) equipped with a singlelayer transmissive spatial light modulator (SLM), in particular, a liquid crystal display (LCD). Occlusion is an important depth cue for 3D perception, yet realizing it on OST-HMDs is particularly difficult due to the displays' semitransparent nature. A key component for the occlusion support is the SLM-a device that can selectively interfere with light rays passing through it. For example, an LCD is a transmissive SLM that can block or pass incoming light rays by turning pixels black or transparent. A straightforward solution places an LCD in front of an OST-HMD and drives the LCD to block light rays that could pass through rendered virtual objects at the viewpoint. This simple approach is, however, defective due to the depth mismatch between the LCD panel and the virtual objects, leading to blurred occlusion. This led existing OST-HMDs to employ dedicated hardware such as focus optics and multi-stacked SLMs. Contrary to these viable, yet complex and/or computationally expensive solutions, we return to the single-layer LCD approach for the hardware simplicity while maintaining fine occlusion-we compensate for a degraded occlusion area by overlaying a compensation image. We compute the image based on the HMD parameters and the background scene captured by a scene camera. The evaluation demonstrates that the proposed method reduced the occlusion leak error by 61.4% and the occlusion error by 85.7%.
Spatial augmented reality (SAR) pursues realism in rendering materials and objects. To advance this goal, we propose a hybrid SAR (HySAR) that combines a projector with optical see-through head-mounted displays (OST-HMD). In an ordinary SAR scenario with co-located viewers, the viewers perceive the same virtual material on physical surfaces. In general, the material consists of two components: a view-independent (VI) component such as diffuse reflection, and a view-dependent (VD) component such as specular reflection. The VI component is static over viewpoints, whereas the VD should change for each viewpoint even if a projector can simulate only one viewpoint at one time. In HySAR, a projector only renders the static VI components. In addition, the OST-HMD renders the dynamic VD components according to the viewer's current viewpoint. Unlike conventional SAR, the HySAR concept theoretically allows an unlimited number of co-located viewers to see the correct material over different viewpoints. Furthermore, the combination enhances the total dynamic range, the maximum intensity, and the resolution of perceived materials. With proof-of-concept systems, we demonstrate HySAR both qualitatively and quantitatively with real objects. First, we demonstrate HySAR by rendering synthetic material properties on a real object from different viewpoints. Our quantitative evaluation shows that our system increases the dynamic range by 2.24 times and the maximum intensity by 2.12 times compared to an ordinary SAR system. Second, we replicate the material properties of a real object by SAR and HySAR, and show that HySAR outperforms SAR in rendering VD specular components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.