Abstract.The structure and function of chromatin can be altered by modifications to histone. Histone acetylation is a reversible process governed by histone acetyltransferases and histone deacetylases (HDACs). HDAC6 is a subtype of the HDAC family that deacetylates ·-tubulin and increases cell motility. We investigated the expression levels of HDAC6 mRNA and protein expression in oral squamous cell carcinoma (OSCC)-derived cell lines and human primary OSCCs to elucidate the potential involvement of HDAC6 in OSCC. Using quantitative real-time reverse transcription polymerase chain reaction and Western blots on nine OSCC-derived cell lines and normal oral keratinocytes (NOKs), HDAC6 mRNA and protein expression were commonly up-regulated in all cell lines compared with the NOKs. Immunofluorescence analysis detected HDAC6 protein in the cytoplasm of OSCC cell lines. Similar to OSCC cell lines, high frequencies of HDAC6 up-regulation were evident in both mRNA (74%) and protein (51%) levels of primary tumors. Among the clinical variables analyzed, the clinical tumor stage was found to be associated with the HDAC6 expression states. The analysis indicated a significant difference in the HDAC6 expression level between the early stage (stage I and II) and advancedstage (stage III and IV) tumors (P=0.014). These results suggest that HDAC6 expression may be correlated with tumor aggressiveness and offer clues to the planning of new treatments.
Abstract. The aim of this study was to identify tumor suppressor genes (TSGs) in oral squamous cell carcinoma (OSCC) using whole-genome analysis of microarray technology and real-time quantitative polymerase chain reaction (QPCR). We applied whole-genome analysis of TSGs in the specimens from 3 patients of OSCC by microarray technology. A total of 11 genes, CRISP3, SCGB3A1, AGR2, PIP, C20orf114, TFF1, STATH, AZGP1, MUC7, DMBT1 and LOC389429, were found to be down-regulated, and 2, matrix metallopeptidase (MMP) 1 and MMP3, were found to be up-regulated in the 3 OSCC patients using microarray technology. In this study, we selected the CRISP3 gene. CRISP3 belongs to the cystein-rich secretary protein gene family in chromosome 6p12.3. CRISP3 has been found in the salivary gland, spleen and prostate gland and is a prominent biomarker in the gene expression of prostate cancer. Down-regulation of this gene was previously observed in OSCC. No studies examining the DNA copy number of CRISP3 in detail exist. We analyzed the DNA copy number of CRISP3 in 5 OSCCderived cell lines (SAS, KON, HSC2 and HSC4) and 60 OSCC tissues by real-time QPCR. The DNA copy number loss of CRISP3 was observed in 2 of the 5 OSCC-derived cell lines (SAS, HSC2) and in 24 of 60 patients (40.0%) using real-time QPCR. A significant statistical correlation between the copy number loss and gender and T classification was observed. These results indicate that the inactivation of CRISP3 is an early event in OSCC, since the T1/T2 classification is correlated with DNA copy number loss of CRISP3, whereas T3/T4 classification is not. We conclude that CRISP3 may be involved in the carcinogenesis of OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.