Highlights d Cities possess a consistent ''core'' set of non-human microbes d Urban microbiomes echo important features of cities and city-life d Antimicrobial resistance genes are widespread in cities d Cities contain many novel bacterial and viral species
We have previously shown that acacia polyphenol (AP), which was extracted from the bark of Acacia mearnsii De Wild, exerts antiobesity, antidiabetic, and antihypertensive effects. In this study, we examined the effect of AP on atopic dermatitis. Trimellitic anhydride (TMA) was applied to the ears of mice to create model mice with atopic dermatitis. The frequency of scratching behavior in the TMA-treated group was significantly higher than that in the control group, and the expression levels of inflammatory markers (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2) in the skin also increased. In contrast, both the frequency of scratching behavior and the expression levels of skin inflammatory markers in the AP-treated group were significantly lower than those in the TMA-treated group. The abundances of beneficial bacteria, such as Bifidobacterium spp. and Lactobacillus spp., increased in the AP-treated group compared with the TMA-treated group. Furthermore, the abundances of Bacteroides fragilis and Clostridium coccoides in the gut, which are known for anti-inflammatory properties, increased significantly with AP administration. The present results revealed that AP inhibits TMA-induced atopic dermatitis-like symptoms. In addition, the results also suggested that this effect may be associated with the mechanism of gut microbiota improvement.
The barley cultivar Sarab 1 (SRB1) can continue photosynthesis despite its low Fe acquisition potential via roots and dramatically reduced amounts of photosystem I (PSI) reaction-center proteins under Fe-deficient conditions. We compared the characteristics of photosynthetic electron transfer (ET), thylakoid ultrastructure, and Fe and protein distribution on thylakoid membranes among barley cultivars. The Fe-deficient SRB1 had a large proportion of functional PSI proteins by avoiding P700 over-reduction. An analysis of the thylakoid ultrastructure clarified that SRB1 had a larger proportion of non-appressed thylakoid membranes than those in another Fe-tolerant cultivar, Ehimehadaka-1 (EHM1). Separating thylakoids by differential centrifugation further revealed that the Fe-deficient SRB1 had increased amounts of low/light-density thylakoids with increased Fe and light-harvesting complex II (LHCII) than did EHM1. LHCII with uncommon localization probably prevents excessive ET from PSII leading to elevated NPQ and lower PSI photodamage in SRB1 than in EHM1, as supported by increased Y(NPQ) and Y(ND) in the Fe-deficient SRB1. Unlike this strategy, EHM1 may preferentially supply Fe cofactors to PSI, thereby exploiting more surplus reaction center proteins than SRB1 under Fe-deficient conditions. In summary, SRB1 and EHM1 support PSI through different mechanisms during Fe deficiency, suggesting that barley species have multiple strategies for acclimating photosynthetic apparatus to Fe deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.