SignificanceIatrogenic failures of assisted reproduction technology could be associated with routine sperm preparation techniques. Limitations of conventional sperm selection methods include the inability to efficiently sort functional spermatozoa and assess sperm fertilization potential. We developed a robust microfluidic sperm sorting system by using a diffuser-type microfluidic sperm sorter device capable of ultrahigh-throughput selection and separation of motile, DNA-intact, and functionally competent sperm. The strategy inclusively targeted the intrinsic traits related to fertility and successfully produced livebirths from low-dose insemination of microfluidic sorted spermatozoa. The fertile subpopulation was identified based on the kinetic and trajectory patterns as the sinuous, transitional cohort. The clinical significance of microfluidic sperm sorting is reflected by the established pregnancy and live births of calves.
Programmed necrosis (necroptosis) is an alternative form of programmed cell death that is regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent, but is a caspase (CASP)-independent pathway. In the present study, to determine if necroptosis participates in bovine structural luteolysis, we investigated RIPK1 and RIPK3 expression throughout the estrous cycle, during prostaglandin F2α (PGF)-induced luteolysis in the bovine corpus luteum (CL), and in cultured luteal steroidogenic cells (LSCs) after treatment with selected luteolytic factors. In addition, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 μM) on cell viability, progesterone secretion, apoptosis related factors and RIPKs expression, were evaluated. Expression of RIPK1 and RIPK3 increased in the CL tissue during both spontaneous and PGF-induced luteolysis (P < 0.05). In cultured LSCs, tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM) up-regulated RIPK1 mRNA and protein expression (P < 0.05). TNF + IFNG also up-regulated RIPK3 mRNA expression (P < 0.05), but not RIPK3 protein. Although Nec-1 prevented TNF + IFNG-induced cell death (P < 0.05), it did not affect CASP3 and CASP8 expression. Nec-1 decreased both RIPK1 and RIPK3 protein expression (P < 0.05). These findings suggest that RIPKs-dependent necroptosis is a potent mechanism responsible for bovine structural luteolysis induced by pro-inflammatory cytokines.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8-12 of the cycle) were treated for 24 h with PGE2 (0.001-1 microM) and PGF2alpha (0.001-1 microM). Prostaglandin E2 (1 microM) and PGF2alpha (1 microM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.