Understanding relaxation processes is an important unsolved problem in many areas of physics. A key challenge is the scarcity of experimental tools for the characterization of complex transient states. We used measurements of full quantum mechanical probability distributions of matter-wave interference to study the relaxation dynamics of a coherently split one-dimensional Bose gas and obtained comprehensive information about the dynamical states of the system. After an initial rapid evolution, the full distributions reveal the approach toward a thermal-like steady state characterized by an effective temperature that is independent from the initial equilibrium temperature of the system before the splitting process. We conjecture that this state can be described through a generalized Gibbs ensemble and associate it with prethermalization.
In this paper, we study transport properties of non-equilibrium systems under the application of light in many-terminal measurements, using the Floquet picture. We propose and demonstrate that the quantum transport properties can be controlled in materials such as graphene and topological insulators, via the application of light. Remarkably, under the application of off-resonant light, topological transport properties can be induced; these systems exhibits quantum Hall effects in the absence of a magnetic field with a near quantization of the Hall conductance, realizing so-called quantum Hall systems without Landau levels first proposed by Haldane.
† These two authors contributed equally to this work.Geometric phases that characterize the topological properties of Bloch bands play a fundamental role in the modern band theory of solids. Here we report on the direct measurement of the geometric phase acquired by cold atoms moving in one-dimensional optical lattices. Using a combination of Bloch oscillations and Ramsey interferometry, we extract the Zak phase -the Berry phase acquired during an adiabatic motion of a particle across the Brillouin zone -which can be viewed as an invariant characterizing the topological properties of the band. For a dimerized optical lattice, which models polyacetylene, we measure a difference of the Zak phase equal to δϕ Zak = 0.97(2)π for the two possible polyacetylene phases with different dimerization. This indicates that the two dimerized phases belong to different topological classes, such that for a filled band, domain walls have fractional quantum numbers. Our work establishes a new general approach for probing the topological structure of Bloch bands in optical lattices.
u-,k
Clockwise WindingAnti-Clockwise Winding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.