Summary1 Maximum attainable height varies greatly between tree species in tropical rain forests and covaries with demographic and allometric traits. We examined these relationships in 27 abundant tree species in a mixed dipterocarp forest. These species were monitored over 3 years in two 1-ha plots in western Borneo. A 95-percentile upper height limit was used to represent maximum height, to avoid sample size differences among populations. 2 Average growth rate in trunk diameter was regressed against trunk diameter using a maximum likelihood model and assuming that growth rates were exponentially distributed around the average. Estimated average growth rate at small trunk diameters (up to 11 cm) was independent of maximum height among the 27 species, while the degree of growth reduction at larger diameters was larger for species with smaller maximum height. 3 The recruitment rate efficiency of saplings was negatively correlated with maximum height, regardless of the measure used to assess species abundance. In particular, sapling recruitment per unit basal area declined greatly with increasing maximum height, consistent with model predictions of the traits required for the stable coexistence of species at different heights within the canopy. 4 Allometric analyses showed that understorey species had shorter heights at the same trunk diameter, and deeper crowns at the same tree height, than canopy species. Therefore, understorey species showed adaptive morphology to deep shade. 5 The regressed size-dependent pattern of average growth rate and an assumption that the population was in a steady state readily explained the observed trunk diameter distributions for 21 species among 27 examined. These species, for which the projected size distribution hardly changed when the natural increase or decrease of the population was set at γ = ± 0.005 year − 1 , had mortality rates of more than four times the value of γ .
Arachidonic acid (AA) is remarkably enriched in phosphatidylinositol (PI). Studies using knockout mice of lysophosphatidylinositol acyltransferase 1, which selectively incorporates AA into PI, reveal that AA-containing PI plays a crucial role in cortical lamination and neuronal migration during brain development.
Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature, wood density, and capacity for horizontal crown expansion. The enhancement of a demographic trade-off due to interspecific variation in functional traits in the understory helps to explain species coexistence in diverse rain forests.
Summary1. Tree architecture is thought to allow species to partition horizontal and vertical light gradients in the forest canopy. Tree architecture is closely related to light capture, carbon gain and the efficiency with which trees reach the canopy. Previous studies that investigated how light gradients drive differentiation in tree architecture have produced inconsistent results, partially because of the differences in which tree species and ontogenetic stages were studied. 2. We examined the relationship between stem diameter, tree height, foliage height, crown width and life-history strategy over a broad size range of 200 randomly selected, co-occurring tree species in a lowland rainforest in Peninsular Malaysia. We developed a hierarchical Bayesian model to account for both intra-and interspecific variation and describe the relationships among tree architectural variables. We analysed interspecific variation in tree architectural variables in relation to adult stature and light requirement for species regeneration as a function of tree size. 3. There was little interspecific variation in architectural variables, this is partly because of large intraspecific variation in response to canopy heterogeneity, but it also suggests architectural convergence within this community. However, interspecific analyses showed that, for large-statured species, small size classes had thinner stems with narrow and shallow crowns, whereas large-size classes had wider crowns. Light-demanding species (as indicated by high sapling mortality in shaded conditions) showed weak trends in tree architecture and were only characterized by wide crowns at intermediate sizes.4. In summary, tree architectural traits overlapped across the species community. This suggests that architectural convergence and equalizing effects occur in this diverse tropical forest and that community-wide allometric equations can be used to describe forest height and carbon storage. Light resource partitioning also occurs, indicating stabilizing effects. Interspecific architectural variation in relation to adult stature supports the theory of the trade-off between early reproduction and vegetative growth. In closed rainforests, adult stature imposes a stronger force on architectural differentiation of species than regeneration light requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.