To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We demonstrate the allotetraploid origin of X. laevis by partitioning its genome into two homeologous subgenomes, marked by distinct families of “fossil” transposable elements. Based on the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged ~34 million years ago (Mya) and combined to form an allotetraploid ~17–18 Mya. 56% of all genes are retained in two homeologous copies. Protein function, gene expression, and the amount of flanking conserved sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.
We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers.
The structure and function of transcription factors of higher plants was studied by isolating cDNA clones encoding a wheat sequence-specific DNA binding protein. A hexameric nucleotide motif, ACGTCA, is located upstream from the TATA box of several plant histone genes. It has been suggested that this motif is essential for efficient transcription of the wheat histone H3 gene. A wheat nuclear protein, HBP-1 (histone DNA binding protein-1), which specifically binds to the hexameric motif, has previously been identified as a putative transcription factor. A cDNA clone encoding HBP-1 has been isolated on the basis of specific binding of HBP-1 to the hexameric motif. The deduced amino acid sequence indicates that HBP-1 contains the leucine zipper motif, which represents a characteristic property of several eukaryotic transcription factors.
Xenopus tropicalis has been developed as a model organism for developmental biology, providing a system offering both modern genetics and classical embryology. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas) system for genome modification has provided an additional tool for Xenopus researchers to achieve simple and efficient targeted mutagenesis. Here, we provide insights into experimental design and procedures permitting successful application of this technique to Xenopus researchers, and offer a general strategy for performing loss-of-function assays in F0 and subsequently F1 embryos.
Background: Bone morphogenetic proteins (BMPs) transmit signals via the intracellular protein Smad1, which is phosphorylated by ligand bound receptors, translocates to the nucleus, and functions to activate BMP target genes. Recently, a subclass of Smad proteins has been shown to inhibit, rather than transduce, BMP signalling, either by binding to the intracellular domain of BMP receptors, thereby preventing phosphorylation-mediated activation of Smad1, or by binding directly to Smad1, thereby inhibiting its ability to activate gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.