Polymer electrolyte membrane fuel cells (PEFC) with a porous flow field have been proposed as an alternative to cells with gas flow channels. In this study, the basic characteristics of a PEFC with a porous flow field are identified experimentally. It is shown that stable operation is maintained under conditions at high current density and low stoichiometric ratios of the cathode air, but that operation with low relative humidity gases is difficult in the porous type cell. To clarify the detailed causes of these characteristics, internal phenomena are investigated using a cell specially made for cross-section observations of the cathode porous flow field and temperature distribution measurements on the anode gas diffusion layer (GDL) surface. The direct observations show that the porous type cell is superior in draining the condensed water from the GDL surface, and that hydrophilic properties of the porous material is important for better cell performance at high current densities. The temperature measurements indicate that increases in temperature near the reaction area tends to be larger in the porous type cell than in the channel type cell due to the lower heat removal capability of the porous material, resulting in the unstable operation at relatively low humidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.