Background and aim There is a growing body of evidence demonstrating that plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. In fact, PAI-1 knockout mice are protected from bleomycin-induced pulmonary fibrosis. This study was conducted to determine whether the intrapulmonary administration of small interfering RNA (siRNA) targeting PAI-1 (PAI-1-siRNA) limits the development of bleomycin-induced pulmonary fibrosis. Methods Lung biopsies from patients with idiopathic pulmonary fibrosis (IPF) were stained for PAI-1. The distribution of siRNA in the lung, the PAI-1 level in bronchoalveolar (BAL) fluid and the extent of fibrotic changes in the lung were evaluated following the intranasal administration of PAI-1-siRNA in a mouse model of bleomycin-induced pulmonary fibrosis. The effect of PAI-1-siRNA on the epithelial to mesenchymal transition (EMT) was also evaluated using a mouse lung epithelial cell line, LA-4. Results PAI-1 was overexpressed in the hyperplastic type 2 pneumocytes lining the honeycomb lesions of patients with IPF. The single intranasal instillation of PAI-1-siRNA resulted in the diffuse uptake of siRNA into the epithelial cells lining the dense fibrotic lesions. The repeated administration of PAI-1-siRNA initiated during either the inflammatory or the fibrotic phase into bleomycin-injured mice reduced the PAI-1 level in BAL fluid and limited the accumulation of collagen in the lungs. EMT induced by transforming growth factor b (TGFb) in LA-4 cells was inhibited by transfection with PAI-1-siRNA. Conclusions The direct suppression of PAI-1 in the lung by the intrapulmonary administration of PAI-1-siRNA attenuated the development and progression of pulmonary fibrosis. The inhibition of EMT may be, at least in part, involved in this effect.
Bach1 is a transcriptional repressor of the heme oxygenase (HO)-1 gene. Bach1-null (Bach1(-/-)) mice are reported to be protected from myocardial ischemia/reperfusion injury; however, the effect of Bach1 disruption on another oxidative stress model of hyperoxic lung injury has yet to be determined. To investigate the role of Bach1 in hyperoxic lung injury, Bach1(-/-) mice and wild-type (WT) mice were exposed to 90% O(2). During hyperoxic exposure, the survival of Bach1(-/-) mice was significantly longer than that of WT mice. However, the administration of zinc protoporphyrin, an inhibitor of HO-1 activity, did not change the mortality in either of the mice, thus suggesting that this protective effect was not mediated by an HO-1 overexpression in Bach1(-/-) mice. The indices of lung injury in the lungs of Bach1(-/-) mice were lower than those of WT mice; unexpectedly, however, the levels of IL-6 in bronchoalveolar lavage (BAL) fluid from Bach1(-/-) mice were significantly higher than those of WT mice. Interestingly, the intrapulmonary administration of small interfering RNA against IL-6 was shown to reduce the IL-6 levels in BAL fluids and shorten the survival in Bach1(-/-) mice during hyperoxic exposure. In addition, a chromatin immunoprecipitation analysis revealed the binding of Bach1 to the IL-6 promoter and its detachment after oxidative stress. Considering the previous observation that the transgenic mice overexpressing IL-6 are protected from hyperoxic lung injury, these results therefore indicate that IL-6 mediates an increased survival in Bach1(-/-) mice during hyperoxic exposure.
In contrast to non-NSAID-associated gastric ulcers, NSAID-associated gastric ulcers frequently occur in the antrum with bleeding. The rate of H. pylori infection in NSAID-associated gastric ulcers is significantly lower than that in non-NSAID-associated gastric ulcers.
The pattern of cell death and proliferation may vary with different macroscopic types of intramucosal colorectal carcinoma. Superficial-type colorectal carcinomas especially demonstrate diminished apoptosis and increased cell proliferation. This may be useful in understanding their biologic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.