Garlic is an important vegetable in terms of its economic value and also as a medicinal plant. In this study, chitosan (300 mM) and yeast extract (8 g/L) were used individually or in combination to improve the yields of garlic plants under drought conditions (i.e., 75% and 50% of the water they would normally receive from irrigation) for two seasons. Significant decreases in numbers of leaves per plant and plant height, plant dry weight, relative water content, and chlorophyll a and b concentrations were found in stressed garlic plants in both seasons. The greatest reductions in these characters were recorded in plants that received only 50% of the normal irrigation in both seasons. Levels of hydrogen peroxide, products of lipid peroxidation such as malondialdehyde, and superoxide, as well as percentages of electrolyte leakage, were elevated considerably and were signals of oxidative damage. The application of the yeast extract (8 g/L) or chitosan (300 mM) individually or in combination led to a remarkable increase in the most studied characters of the stressed garlic plants. The combination of yeast extract (8 g/L) plus chitosan (300 mM) led to increase plant height (44%), ascorbic acid levels (30.2%), and relative water content (36.8%), as well as the chlorophyll a (50.7%) and b concentrations (79%), regulated the proline content and levels of antioxidant enzymes in stressed garlic plants that received 75% of the normal irrigation, and this decreased the signs of oxidative stress (i.e., percentage of electrolyte leakage and levels of malondialdehyde, hydrogen peroxide, and superoxide).
Hybrid rice parental lines with better combining abilities provide an efficient tool to increase rice production. In the current study, twenty hybrid combinations were generated from five aromatic cytoplasmic male sterile (CMS) lines and four restorer lines (three of them aromatic) using a line × tester mating design. The hybrids and their parental lines were evaluated under two water regimes: normal irrigation and water-stress. Ten yield-component traits were studied over a period of 2 years, and the significant differences between the parents and hybrids are reported in this investigation. Overall, all yield component traits were significantly affected by the water deficit and were governed by both additive and non-additive gene actions. More specifically, the grain yield (GY) was mainly controlled by non-additive gene action under both normal and water-stress conditions. The contribution of the additive variance (σ2 A) was more prominent in the genetic components of traits as compared to the dominance variance (σ2 D). The aromatic parental line CMS IR58025A and the restorer line PR2 were recorded as the best combiners for the GY and good combiners for many other characteristics under both growth conditions. The cross combinations Pusa12A/IR25571-31R and Pusa12A/Giza-Basmati-201 revealed significantly positive specific combining ability (SCA) effects for the GY under both normal and water-stress conditions. The inconsistent correlation between the general combining ability (GCA) and SCA manifested complex interactions among the positive and negative alleles of the genes controlling the yield traits. Generally, the findings of this investigation demonstrated the importance of the GCA and SCA for understanding the genetic components and gene actions of the yield characteristics in new aromatic hybrid rice parental lines. Therefore, we recommend considering these findings in the selection of elite parents for developing superior aromatic hybrid rice varieties under water-stress conditions.
Quinoa cultivation has expanded from South America to many countries because of its wide adaptability and nutritional value. We evaluated 32 introduced quinoa genotypes using 17 qualitative and 11 quantitative traits under Saudi Arabia conditions during the 2018–2019 season. The quinoa genotypes showed considerable variation during the vegetative and maturity stages. Plant height values varied between 60 and 18 cm, and maturity ranged from 98 to 177 days. Leaf shapes were rhomboidal or triangular, with dentate or serrate margins. Green was the standard color for leaves and panicles at the flowering stage. The leaf granule colors were white, purple, and white-red. At 150 units of the Euclidean distance, the genotypes aggregated into four major groups based on their morphological traits. Twenty-one sequence-related amplified polymorphism (SRAP) primer pair combinations generated 75 amplified fragments (alleles), with a mean of 3.57 alleles per primer pair combination. Unweighted Pair-Group Method with Arithmetic means (UPGMA) clustering analysis showed that the quinoa genotypes were grouped based on origin or according to genetic background. Genotypes from South America presented higher mean values for the average number of alleles, Shannon index (0.411), gene diversity (0.271), and polymorphic percentage (83.95). Analysis of molecular variance (AMOVA) showed that most of the genetic variation was because of differences within populations (86%). The wide variability of the genotypes studied herein is of great importance for quinoa breeders.
In the present investigation, we study the effect of Bacillus thuringiensis MH161336 (106–8 CFU/cm3), silicon (25 mL L−1), and carrot extract (75 mL L−1) as seed primers, individually or in combination, on morphological, physio-biochemical and yield components of drought-stressed pea plants (Master B) during 2019/2020 and 2020/2021 seasons. Our results indicated that drought causes a remarkable reduction in plant height, leaf area, number of leaves per plant, and number of flowers per plant in stressed pea plants during two seasons. Likewise, number of pods, pod length, seeds weight of 10 dried plants, and dry weight of 100 seeds were decreased significantly in drought-stressed pea plants. Nevertheless, seed priming with the individual treatments or in combination boosted the morphological, physio-biochemical, and yield characters of pea plants. The best results were obtained with the Bacillus thuringiensis + carrot extract treatment, which led to a remarkable increase in the number of leaves per plant, leaf area, plant height, and number of flowers per plant in stressed pea plants in both seasons. Moreover, pod length, number of seeds per pod, seeds weight of 10 dried plants, and dry weight of 100 seeds were significantly increased as well. Bacillus thuringiensis + carrot extract treatment led to improved biochemical and physiological characters, such as relative water content, chlorophyll a, chlorophyll b, regulated the up-regulation of antioxidant enzymes, increased seed yield, and decreased lipid peroxidation and reactive oxygen species, mainly superoxide and hydrogen peroxide, in drought-stressed pea plants.
We investigated the impact of Bacillus thuringiensis as seed treatment and application with silicon on lettuce plants exposed to salinity levels (4 dS m−1 and 8 dS m−1). Results revealed that leaves number, head weight, total yield, relative water content (RWC), and chlorophyll a and b declined considerably due to two salinity levels. Oxidative stress markers, i.e., hydrogen peroxide (H2O2), superoxide (O2−), and lipid peroxidation (MDA) dramatically augmented in stressed plants. On the other hand, leaves number, total yield, RWC, and chlorophyll a, b in stressed lettuce plants were considerably enhanced because of the application of Si or B. thuringiensis. In contrast, EL%, MDA, and H2O2 were considerably reduced in treated lettuce plants with Si and B. thuringiensis. In addition, the treatment with Si and B. thuringiensis increased head weight (g) and total yield (ton hectare-1), and caused up-regulation of proline and catalase, superoxide dismutase, peroxidase, and polyphenol oxidase activity in lettuce leaves under salinity conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.