The new Coordinated Output for Regional Evaluations (CORDEX-CORE) ensemble provides high-resolution, consistent regional climate change projections for the major inhabited areas of the world. It serves as a solid scientific basis for further research related to vulnerability, impact, adaptation and climate services in addition to existing CORDEX simulations. The aim of this study is to investigate and document the climate change information provided by the CORDEX-CORE simulation ensemble, as a part of the World Climate Research Programme (WCRP) CORDEX community. An overview of the annual and monthly mean climate change information in selected regions in different CORDEX domains is presented for temperature and precipitation, providing the foundation for detailed follow-up studies and applications. Initially, two regional climate models (RCMs), REMO and RegCM were used to downscale global climate model output. The driving simulations by AR5 global climate models (AR5-GCMs) were selected to cover the spread of high, medium, and low equilibrium climate sensitivity at a global scale. The CORDEX-CORE ensemble has doubled the spatial resolution compared to the previously existing CORDEX simulations in most of the regions (25$$\,\mathrm {km}$$
km
(0.22$$^{\circ }$$
∘
) versus 50$$\,\mathrm {km}$$
km
(0.44$$^{\circ }$$
∘
)) leading to a potentially improved representation of, e.g., physical processes in the RCMs. The analysis focuses on changes in the IPCC physical climate reference regions. The results show a general reasonable representation of the spread of the temperature and precipitation climate change signals of the AR5-GCMs by the CORDEX-CORE simulations in the investigated regions in all CORDEX domains by mostly covering the AR5 interquartile range of climate change signals. The simulated CORDEX-CORE monthly climate change signals mostly follow the AR5-GCMs, although for specific regions they show a different change in the course of the year compared to the AR5-GCMs, especially for RCP8.5, which needs to be investigated further in region specific process studies.
The characteristics of tropical cyclone (TC) activity over 5 TC basins lying within four Coordinated Regional Downscaling Experiment (CORDEX) domains are examined for present and future climate conditions using a new ensemble of projections completed as part of the CORDEX-CORE initiative with the regional climate model RegCM4. The simulations are conducted on a 25 km horizontal grid spacing using lateral and lower boundary forcing from three CMIP5 general circulation models (GCMs) under two Representative Concentration Pathways (RCP2.6 and RCP8.5). The RegCM4 is capable of capturing most features of the observed TC climatology over the different basins and exhibits a improved simulation of several TC statistics compared to the driving GCMs, except over the North Indian Ocean basin. Analysis of the influence of global warming on TC activity indicates significant increases in their frequency over the North Indian Ocean, the Northwest Pacific and Eastern Pacific regions. These changes are consistent with an increase in mid-tropospheric relative humidity. On the other hand, the North Atlantic and Australasia regions show a decrease in TC frequency, mostly associated with an increase in wind shear. We also find a predominant increase in the frequency of the most intense TCs over most domains. Our study shows robust and statistically significant responses often, but not always, in line with previous studies, still implying the presence of significant uncertainties. A robust assessment of TC changes requires analyses of ensembles of simulations with high-resolution models capable of representing the response of different TC characteristics to key atmospheric factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.