Bilharzia or schistosomiasis is one of the most fatal and factitious disease happens through pollute which become a significant reason of deaths in the world. Prediction and factors identification that become causes of disease in early stage, may escort to treatment before it becomes critical. Data mining techniques are used to assist medical professionals effectively in diseases' classification. This research investigates the recovery and death factors which contributes to schistosomiasis disease preprocessed dataset, collected from Hubei, China. A computerized learning method, association rule mining (Apriori) is used to spot factors. Different tools were used for analysis and model evaluation with minimum support and minimum confidence indicated higher than 90% to generate rules. In addition, attributes indicating recovery and death of individuals were identified. Strong associations of disease factors; BMI, viability, nourishment, extent to ascites etc. determined and classified through Apriori algorithm. Further, results generated by association rule mining method may useful for professionals in treatment decision with better precision.
Lysine Lipoylation is a protective and conserved Post Translational Modification (PTM) in proteomics research like prokaryotes and eukaryotes. It is connected with many biological processes and closely linked with many metabolic diseases. To develop a perfect and accurate classification model for identifying lipoylation sites at the protein level, the computational methods and several other factors play a key role in this purpose. Usually, most of the techniques and different traditional experimental models have a very high cost. They are time-consuming; so, it is required to construct a predictor model to extract lysine lipoylation sites. This study proposes a model that could predict lysine lipoylation sites with the help of a classification method known as Artificial Neural Network (ANN). The ANN algorithm deals with the noise problem and imbalance classification in lipoylation sites dataset samples. As the result shows in ten-fold cross-validation, a brilliant performance is achieved through the predictor model with an accuracy of 99.88%, and also achieved 0.9976 as the highest value of MCC. So, the predictor model is a very useful and helpful tool for lipoylation sites prediction. Some of the residues around lysine lipoylation sites play a vital part in prediction, as demonstrated during feature analysis. The wonderful results reported through the evaluation and prediction of this model can provide an informative and relative explanation for lipoylation and its molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.