We describe a novel and unique argumentative structure dataset. This corpus consists of data extracted fro m hundreds of Wikipedia articles using a meticulously monitored manual annotation process. The result is 2,683 argument elements, collected in the context of 33 controversial topics, organized under a simp le claim-evidence structure. The obtained data are publicly available for academic research.
No abstract
For a long time, the clinical management of antiretroviral drug resistance was based on sequence analysis of the HIV genome followed by estimating drug susceptibility from the mutational pattern that was detected. The large number of anti-HIV drugs and HIV drug resistance mutations has prompted the development of computer-aided genotype interpretation systems, typically comprising rules handcrafted by experts via careful examination of in vitro and in vivo resistance data. More recently, machine learning approaches have been applied to establish data-driven engines able to indicate the most effective treatments for any patient and virus combination. Systems of this kind, currently including the Resistance Response Database Initiative and the EuResist engine, must learn from the large data sets of patient histories and can provide an objective and accurate estimate of the virological response to different antiretroviral regimens. The EuResist engine was developed by a European consortium of HIV and bioinformatics experts and compares favorably with the most commonly used genotype interpretation systems and HIV drug resistance experts. Next-generation treatment response prediction engines may valuably assist the HIV specialist in the challenging task of establishing effective regimens for patients harboring drug-resistant virus strains. The extensive collection and accurate processing of increasingly large patient data sets are eagerly awaited to further train and translate these systems from prototype engines into real-life treatment decision support tools.
This paper presents a task for machine listening comprehension in the argumentation domain and a corresponding dataset in English. We recorded 200 spontaneous speeches arguing for or against 50 controversial topics. For each speech, we formulated a question, aimed at confirming or rejecting the occurrence of potential arguments in the speech. Labels were collected by listening to the speech and marking which arguments were mentioned by the speaker. We applied baseline methods addressing the task, to be used as a benchmark for future work over this dataset. All data used in this work is freely available for research.
In Natural Language Understanding, the task of response generation is usually focused on responses to short texts, such as tweets or a turn in a dialog. Here we present a novel task of producing a critical response to a long argumentative text, and suggest a method based on general rebuttal arguments to address it. We do this in the context of the recently-suggested task of listening comprehension over argumentative content: given a speech on some specified topic, and a list of relevant arguments, the goal is to determine which of the arguments appear in the speech. The general rebuttals we describe here (written in English) overcome the need for topic-specific arguments to be provided, by proving to be applicable for a large set of topics. This allows creating responses beyond the scope of topics for which specific arguments are available. All
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.