The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21–derived heavy chains (HCs) with IGLV3-21–derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110–expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR–BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01–expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110–expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.
In chronic lymphocytic leukemia (CLL), NOTCH1 mutations have been associated with clinical resistance to the anti-CD20 rituximab, although the mechanisms behind this peculiar behavior remain to be clarified. In a wide CLL series (n=692), we demonstrated that CLL cells from NOTCH1-mutated cases (87/692) were characterized by lower CD20 expression and lower relative lysis induced by anti-CD20 exposure in vitro. Consistently, CD20 expression by CLL cells was upregulated in vitro by γ-secretase inhibitors or NOTCH1-specific small interfering RNA and the stable transfection of a mutated (c.7541-7542delCT) NOTCH1 intracellular domain (NICD-mut) into CLL-like cells resulted in a strong downregulation of both CD20 protein and transcript. By using these NICD-mut transfectants, we investigated protein interactions of RBPJ, a transcription factor acting either as activator or repressor of NOTCH1 pathway when respectively bound to NICD or histone deacetylases (HDACs). Compared with controls, NICD-mut transfectants had RBPJ preferentially complexed to NICD and showed higher levels of HDACs interacting with the promoter of the CD20 gene. Finally, treatment with the HDAC inhibitor valproic acid upregulated CD20 in both NICD-mut transfectants and primary CLL cells. In conclusion, NOTCH1 mutations are associated with low CD20 levels in CLL and are responsible for a dysregulation of HDAC-mediated epigenetic repression of CD20 expression.
Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6‑Ugt1−/− mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1−/− mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1−/− but not in C57BL/6-Ugt1−/− mice. Survival of FVB/NJ-Ugt1−/− mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1−/− mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0–P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1−/− mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1−/− mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions.
Purpose: In chronic lymphocytic leukemia (CLL), TP53 mutations are associated with reduced survival and resistance to standard chemoimmunotherapy (CIT). Nevertheless, the clinical impact of subclonal TP53 mutations below 10% to 15% variant allele frequency (VAF) remains unclear. Experimental Design: Using a training/validation approach, we retrospectively analyzed the clinical and biological features of TP53 mutations above (high-VAF) or below (low-VAF) the previously reported 10.0% VAF threshold, as determined by deep next-generation sequencing. Clinical impact of low-VAF TP53 mutations was also confirmed in a cohort (n = 251) of CLL treated with fludarabine-cyclophosphamide-rituximab (FCR) or FCR-like regimens from two UK trials. Results: In the training cohort, 97 of 684 patients bore 152 TP53 mutations, while in the validation cohort, 71 of 536 patients had 109 TP53 mutations. In both cohorts, patients with the TP53 mutation experienced significantly shorter overall survival (OS) than TP53 wild-type patients, regardless of the TP53 mutation VAF. By combining TP53 mutation and 17p13.1 deletion (del17p) data in the total cohort (n = 1,220), 113 cases were TP53 mutated only (73/113 with low-VAF mutations), 55 del17p/TP53 mutated (3/55 with low-VAF mutations), 20 del17p only, and 1,032 (84.6%) TP53 wild-type. A model including low-VAF cases outperformed the canonical model, which considered only high-VAF cases (c-indices 0.643 vs. 0.603, P < 0.0001), and improved the prognostic risk stratification of CLL International Prognostic Index. Clinical results were confirmed in CIT-treated cases (n = 552) from the retrospective cohort, and the UK trials cohort. Conclusions: TP53 mutations affected OS regardless of VAF. This finding can be used to update the definition of TP53 mutated CLL for clinical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.