It has been proposed that the enhanced metabolic activity of tumor cells is accompanied by an increased expression of facilitative hexose transporters (GLUTs). However, a previous immunohistochemical analysis of GLUT1 expression in 154 malignant human neoplasms failed to detect the GLUT1 isoform in 87 tumors. We used 146 normal human tissues and 215 tumor samples to reassess GLUT1 expression. A similar number of samples were used to compare the expression of GLUT2-6 and 9. The classical expression of GLUT1-5 in different normal human tissues was confirmed, however, we were unable to detect GLUT2 in human pancreatic islet cells. GLUT6 was principally detected in testis germinal cells and GLUT9 was localized in kidney, liver, heart, and adrenal. In tumor samples, GLUT1, 2, and 5 were the main transporters detected. GLUT1 was the most widely expressed transporter, however, 42% of the samples had very low-to-negative expression levels. GLUT2 was detected in 31% of the samples, being mainly expressed in breast, colon, and liver carcinoma. GLUT5 was detected in 27% of breast and colon adenocarcinoma, liver carcinoma, lymphomas, and testis seminoma samples. In situ RT-PCR and ultrastructural immunohistochemistry confirmed GLUT5 expression in breast cancer. GLUT6 and 9 are not clearly over-expressed in human cancer. The extensive expression of GLUT2 and 5 (glucose/fructose and fructose transporters, respectively) in malignant human tissues indicates that fructose may be a good energy substrate in tumor cells. Our functional data obtained in vitro in different tumor cells support this hypothesis. Additionally, these results suggest that fructose uptake could be used for positron emission tomography imaging and, may possibly represent a novel target for the development of therapeutic agents in different human cancers.
The GLUT2 glucose transporter and the K-ATP-sensitive potassium channels have been implicated as an integral part of the glucose-sensing mechanism in the pancreatic islet b cells. The expression of GLUT2 and K-ATP channels in the hypothalamic region suggest that they are also involved in a sensing mechanism in this area. The hypothalamic glial cells, known as tanycytes a and b, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. We used immunocytochemistry, in situ hybridization and transport analyses to demonstrate the glucose transporters expressed in tanycytes. Confocal microscopy using specific antibodies against GLUT1 and GLUT2 indicated that both transporters are expressed in a and b tanycytes. In addition, primary cultures of mouse hypothalamic tanycytes were found to express both GLUT1 and GLUT2 transporters. Transport studies, including 2-deoxyglucose and fructose uptake in the presence or absence of inhibitors, indicated that these transporters are functional in cultured tanycytes. Finally, our analyses indicated that tanycytes express the K-ATP channel subunit Kir6.1 in vitro. As the expression of GLUT2 and K-ATP channel is linked to glucose-sensing mechanisms in pancreatic b cells, we postulate that tanycytes may be responsible, at least in part, for a mechanism that allows the hypothalamus to detect changes in glucose concentrations.
Vitamin C is reabsorbed from the renal lumen by one isoform of sodium-vitamin C co-transporters that mediate high affinity sodium-dependent L-ascorbic acid transport. Sodium-vitamin C cotransporter-1 mRNA has been detected in intestine and liver and the S3 segment of the renal proximal tubule. Here, we found that its distribution was broader and all three proximal tubule segments of mouse and human expressed the transporter but the S3 segment had the highest expression. Sodium-vitamin C co-transporter-1 expression was also found in the renal epithelial-derived LLC-PK1 cell line. Ascorbic acid transport in these cells was regulated by a single kinetic component that depended on the sodium concentration, pH and temperature. Reducing ascorbate concentration increased the apical expression of the transporter suggesting the presence of a feedback system for regulation of transporter abundance at the luminal membrane.
Isoform 1 of the sodium-vitamin C co-transporter (SVCT1) is expressed in the apical membrane of proximal tubule epithelial cells in adult human and mouse kidneys. This study is aimed at analyzing the expression and function of SVCTs during kidney development. RT-PCR and immunohistochemical analyses revealed that SVCT1 expression is increased progressively during postnatal kidney development. However, SVCT1 transcripts were barely detected, if not absent, in the embryonic kidney. Instead, the high-affinity transporter, isoform 2 (SVCT2), was strongly expressed in the developing kidney from E15; its expression decreased at postnatal stages. Immunohistochemical analyses showed a dynamic distribution of SVCT2 in epithelial cells during kidney development. In renal cortex tubular epithelial cells, intracellular distribution of SVCT2 was observed at E19 with distribution in the basolateral membrane at P1. In contrast, SVCT2 was localized to the apical and basolateral membranes between E17 and E19 in medullary kidney tubular cells but was distributed intracellularly at P1. In agreement with these findings, functional expression of SVCT2, but not SVCT1 was detected in human embryonic kidney-derived (HEK293) cells. In addition, kinetic analysis suggested that an ascorbate-dependent mechanism accounts for targeted SVCT2 expression in the developing kidney during medullary epithelial cell differentiation. However, during cortical tubular differentiation, SVCT1 was induced and localized to the apical membrane of tubular epithelial cells. SVCT2 showed a basolateral polarization only for the first days of postnatal life. These studies suggest that the uptake of vitamin C mediated by different SVCTs plays differential roles during the ontogeny of kidney tubular epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.