Aqueous suspensions of 10 nm, 50 nm, or 1 μm Fe(3)O(4) particles were injected intraperitoneally (ip) to rats at a dose of 500 mg/kg in 4 mL of sterile deionized water 3 times a week for 5 weeks. Following exposure, functional and biochemical indices and histopathological examinations of spleen and liver tissues of exposed rats were evaluated for signs of toxicity. The iron content of the blood was measured photometrically, and that of the liver and the spleen by atomic adsorption spectroscopy (AAS) and electron paramagnetic resonance (EPR) methods. It was found that, given equal mass doses, Fe(3)O(4) nanoparticles possess considerably higher systemic toxicity than microparticles, but within the nanometric range the relationship between particle size and resorptive toxicity is intricate and nonunique. The latter fact may be attributed to differences in different nanoparticles' toxicokinetics, which are controlled by both more or less substantial direct penetration of nanoparticles through biological barriers and their unequal solubility.
We studied differences between phagocytic responses to nanoparticles (NPs) versus microparticles in the pulmonary region by synthesizing magnetite of different sizes and instilling suspensions of these particles intratracheally into rats' lungs. Ten and 50 nm particles caused a greater increase in cell counts of the bronchoalveolar lavage fluid (BALF) than the instillation of microparticles. The response to 10 nm particles was weaker than to 50 nm ones, and the smaller NPs were more cytotoxic; both were more cytotoxic than the microparticles. Phagocytic activity was also studied using optical and atomic force microscopy. Phagocytes were more "loaded" in the lungs instilled with 10 nm particles as compared with those instilled with 50 nm particles; NPs of both sizes were engulfed more avidly than microparticles. We found in a separate comparative experiment that magnetite NPs were more cytotoxic than titanium dioxide and quartz suspensions having particle size distribution typical of industrial dusts.
Rats were given 20 times during 40 d either naphthalene per gavage or the same and lead acetate intraperitoneally in single doses corresponding to 5% of the respective 50% lethal doses. The concomitant exposure to lead not only added some typical indicators of lead toxicity to the moderate naphthalene intoxication picture but also exaggerated some less specific indices for intoxication. However, a number of such indices testified to attenuation of naphthalene's adverse effects under the impact of lead. Lead also lowered urinary excretion of both total and conjugated naphthalene, while the free- to total naphthalene ratio in urine sharply increased. These results corroborate implicitly the initial hypothesis that lead, being an inhibitor of cytochrome P450, hinders phase I of the naphthalene biotransformation and, thus, the formation of derivates which can be more toxic but are capable of entering into reactions of conjugation with resulting detoxication and elimination of naphthalene from the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.