Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.
The protozoan parasite Trypanosoma cruzi has a complex life cycle characterized by intracellular and extracellular forms alternating between invertebrate and mammals. To cope with these changing environments, T. cruzi undergoes rapid changes in gene expression, which are achieved essentially at the posttranscriptional level. At present, expanding families of small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, T. cruzi lacks canonical small RNA pathways. In a recent work, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by a homogeneous population of tRNA-derived small RNAs (tsRNAs). In T. cruzi epimastigotes submitted to nutrient starvation, tsRNAs colocalized with an argonaute protein distinctive of trypanosomatids (TcPIWI-tryp) and were recruited to particular cytoplasmic granules. Using epifluorescence and electronic microscopy, we observed that tsRNAs and the TcPIWI-tryp protein were recruited mainly to reservosomes and other intracellular vesicles including endosome-like vesicles and vesicular structures resembling the Golgi complex. These data suggested that, in T. cruzi, tsRNA biogenesis is probably part of endocytic/exocytic routes. We also demonstrated that epimastigotes submitted to nutrient starvation shed high levels of vesicles to the extracellular medium, which carry small tRNAs and TcPIWI-tryp proteins as cargo. At least a fraction of extracellular vesicle cargo was transferred between parasites and to mammalian susceptible cells. Our data afford experimental evidence, indicating that extracellular vesicles shed by T. cruzi promote not only life cycle transition of epimastigotes to trypomastigote forms but also infection susceptibility of mammalian cells.
Chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal B cells arrested in G0/G1 stages that coexist, in different proportions, with proliferative B cells. Understanding the crosstalk between the proliferative subsets and their milieu could provide clues on CLL biology. We previously identified one of these subpopulations in the peripheral blood from unmutated patients that appears to be a hallmark of a progressive disease. Aiming to characterize the molecular mechanism underlying this proliferative behavior, we performed gene expression analysis comparing the global mRNA and microRNA expression of this leukemic subpopulation, and compared it with their quiescent counterparts. Our results suggest that proliferation of this fraction depend on microRNA-22 overexpression that induces phosphatase and tensin homolog downregulation and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. Transfection experiments demonstrated that miR-22 overexpression in CLL B cells switches on PI3K/AKT, leading to downregulation of p27(-Kip1) and overexpression of Survivin and Ki-67 proteins. We also demonstrated that this pathway could be triggered by microenvironment signals like CD40 ligand/interleukin-4 and, more importantly, that this regulatory loop is also present in lymph nodes from progressive unmutated patients. Altogether, these results underline the key role of PI3K/AKT pathway in the generation of the CLL proliferative pool and provide additional rationale for the usage of PI3K inhibitors.
SummaryPrimary cilia are conserved organelles that play crucial roles as mechano-and chemosensors, as well as transducing signaling cascades. Consequently, ciliary dysfunction results in a broad range of phenotypes: the ciliopathies. Bardet-Biedl syndrome (BBS), a model ciliopathy, is caused by mutations in 16 known genes. However, the biochemical functions of the BBS proteins are not fully understood. Here we show that the BBS7 protein (localized in the centrosomes, basal bodies and cilia) probably has a nuclear role by virtue of the presence of a biologically confirmed nuclear export signal. Consistent with this observation, we show that BBS7 interacts physically with the polycomb group (PcG) member RNF2 and regulate its protein levels, probably through a proteasome-mediated mechanism. In addition, our data supports a similar role for other BBS proteins. Importantly, the interaction with this PcG member is biologically relevant because loss of BBS proteins leads to the aberrant expression of endogenous RNF2 targets in vivo, including several genes that are crucial for development and for cellular and tissue homeostasis. Our data indicate a hitherto unappreciated, direct role for the BBS proteins in transcriptional regulation and potentially expand the mechanistic spectrum that underpins the development of ciliary phenotypes in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.