A series of congeners structurally related to pritelivir, N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide, a helicase-primase inhibitor for the treatment of herpes simplex virus infections, was prepared. The synthesized primary and secondary sulfonamides were investigated as inhibitors of six physiologically and pharmacologically relevant human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, the cytosolic enzymes hCA I and II, the mitochondrial ones hCA VA and VB, and the transmembrane, tumor associated hCA IX and XII. Low nanomolar inhibition K values were detected for all of them, with a very interesting and well-defined structure-activity relationship. As many CAs are involved in serious pathologies, among which are cancer, obesity, epilepsy, glaucoma, etc., sulfonamide inhibitors as those reported here may be of interest as drug candidates. Furthermore, pritelivir itself is an effective inhibitor of some CAs, also inhibiting whole blood enzymes from several mammalian species, which may be a favorable pharmacokinetic feature of the drug which can be transported throughout the body bound to blood CA I and II.
Pritelivir, a helicase-primase inhibitor, has excellent in vitro and in vivo activity against human herpes simplex virus (HSV). Mice lethally infected with HSV type 1 or 2, including acyclovir-resistant strains, were treated 72 h after infection for 7 days with pritelivir or acyclovir. Both drugs were administered orally twice daily either alone or in combination. Dosages of pritelivir from 0.3 to 30 mg/kg reduced mortality (P < 0.001) against HSV-1, E-377. With an acyclovir resistant HSV-1, 11360, pritelivir at 1 and 3 mg/kg increased survival (P < 0.005). With HSV-2, MS infected mice, all dosages higher than the 0.3 mg/kg dose of pritelivir were effective (P < 0.005). For acyclovir resistant HSV-2, strain 12247, pritelivir dosages of 1-3 mg/kg significantly improved survival (P < 0.0001). Combination therapies of pritelivir at 0.1 or 0.3 mg/kg/dose with acyclovir (10 mg/kg/dose) were protective (P < 0.0001) when compared to the vehicle treated group against HSV-2, strain MS (in line with previous data using HSV-1). An increased mean days to death (P < 0.05) was also observed and was indicative of a potential synergy. Pharmacokinetic studies were performed to determine pritelivir concentrations and a dose dependent relationship was found in both plasma and brain samples regardless of infection status or time of initiation of dosing. In summary, pritelivir was shown to be active when treatment was delayed to 72 h post viral inoculation and appeared to synergistically inhibit mortality in this model in combination with acyclovir. We conclude pritelivir has potent and resistance-breaking antiviral efficacy with potential for the treatment of potentially life-threatening HSV type 1 and 2 infections, including herpes simplex encephalitis.
This study was designed to determine the effects of Compound A on spermatogenesis including assessment of inhibin B levels and on fertility in the male rat over a 15 to 19 weeks treatment and a 19 weeks treatment-free period in control and 30, 60, and 180 mg/kg dose groups (n = 22/group). Compound A in a dose-dependent manner induced various degrees of spermatogenic alterations compatible with Sertoli cells being the primary target, for example, inter- and intracellular Sertoli cell vacuolization and altered cellular morphology followed by germ cell degeneration and marked reduction of epididymidal sperm numbers. Blood-testis barrier remained intact (electron microscopy and hyperosmotic fixation test) until germ cells disappeared. Mating behavior and weights of androgen-dependent prostate and seminal vesicles remained unaffected. Inhibin B levels correlated only with moderate to severe spermatogenic alterations. Ten animals with inhibin B levels below detection limit were encountered and five of these animals were fertile in week 19 but following 19 weeks without treatment, another five animals were rendered infertile and inhibin B levels remained undetectable. In the rat, inhibin B only reflects major spermatogenic alterations and markedly reduced inhibin B levels might indicate irreversibility of these alterations and even infertility.
When the nucleoside analogue acyclovir was introduced in the early 1980s, it presented a game-changing treatment modality for herpes simplex virus infections. Since then, work has been ongoing to improve the weaknesses that have now been identified: a narrow time window for therapeutic success, resistance in immunocompromised patients, little influence on frequency of recurrences, relatively fast elimination, and poor bioavailability. The present Drug Annotation focuses on the helicase−primase inhibitor pritelivir currently in development for the treatment of acyclovir-resistant HSV infections and describes how a change of the molecular target (from viral DNA polymerase to the HSV helicase−primase complex) afforded improvement of the shortcomings of nucleoside analogs. Details are presented for the discovery process leading to the final drug candidate, the pivotal preclinical studies on mechanism of action and efficacy, and on how ongoing clinical research has been able to translate preclinical promises into clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.