Quinine, a treatment used in chloroquine-resistant falciparum malaria, was loaded into poly(ɛ-caprolactone) or Eudragit RS100 nanocapsules using Curcuma oil as the oil-based core. Until now, the effect of cationic nanocapsules on malaria has not been reported. A 2 factorial design was adopted using, as independent variables, the concentration of Curcuma oil, presence of quinine, type of polymer, and aqueous surfactant. Diameter, zeta potential, and pH were the responses studied. The formulations were also evaluated for drug content, encapsulation efficiency, photostability, and antimalarial activity against Plasmodium berghei-infected mice. The type of polymer influenced all of the responses studied. Quinine-loaded Eudragit RS100 (F13) and PCL nanocapsules (F9), both with polysorbate 80 coating, showed nanometric particle size, positive zeta potential, neutral pH, high drug content, and quinine photoprotection ability; thus, these nanocapsules were selected for in vivo tests. Both formulations showed lower levels of parasitemia from the beginning of the experiment (5.78 ± 3.60 and 4.76 ± 3.46% for F9 and F13, respectively) and highest survival mean time (15.3 ± 2.0 and 14.9 ± 5.6 days for F9 and F13, respectively). F9 and F13 showed significant survival curve compared to saline, thus demonstrating that nanoencapsulation improved bioefficacy of QN and co-encapsulated curcuminoids, regardless of the surface charge.
Introduction: The surface charge of nanoparticles, such as nanospheres (NS) and nanocapsules (NC), has been studied with the purpose of improving the in vivo performance of drugs. The aim of this study was to develop, characterize, and evaluate the in vitro antimalarial efficacy of NCP80 and NSP80 (polysorbate coated) or NCEUD and NSEUD (prepared with Eudragit RS 100) loading quinine (QN). Methods: Formulations were prepared by the nanoprecipitation method, followed by wide physicochemical characterization. Antimalarial activity in Plasmodium berghei-infected mice and populational pharmacokinetics (PopPK) in rats were evaluated. Results: The formulations showed a nanometric range (between 138 ± 3.8 to 201 ± 23.0 nm), zeta potential (mV) of −33.1 ± 0.7 (NCP80), −30.5 ± 1 (UNCP80), −25.5 ± 1 (NSP80), −20 ± 0.3 (UNSP80), 4.61 ± 1 (NCEUD), 14.1 ± 0.9 (UNCEUD), 2.86 ± 0.3 (NSEUD) and 2.84 ± 0.6 (UNSEUD), content close to 100%, and good QN protection against UVA light. There was a twofold increase in the penetration of QN into infected erythrocytes with NC compared to that with NS. There was a significant increase in t 1/2 for all NC evaluated compared to that of Free-QN, due to changes in Vdss. PopPK analysis showed that NCP80 acted as a covariate to Q (intercompartmental clearance) and V2 (volume of distribution in the peripheral compartment). For NCEUD, V1 and Q were modified after QN nanoencapsulation. Regarding in vivo efficacy, NCEUD increased the survival of mice unlike Free-QN. Conclusion: Cationic nanocapsules modified the pharmacology of QN, presenting a potential alternative for malaria treatment.
Introduction: Nanoparticle solutions have been studied to improve antimicrobial effect. The aim of this study was to develop, characterize, and evaluate the in vitro and in vivo antiseptic efficacy of 0.25% aqueous-based chlorhexidine nanoemulsion (NM-Cl 0.25% w/v). Methods: The NM-Cl 0.25% w/v (2.5mg/mL) and free chlorhexidine nanoemulsion (FCN; same composition of NM-Cl without the molecule of chlorhexidine) were synthetized by the spontaneous emulsification method. Characterization analyses of physical and chemical properties were performed. The NM-Cl 0.25% w/v was compared with chlorhexidine 0.5% alcohol base (CS-Cl 0.5%) in vitro studies (microdilution study and kill curve study), and in vivo study (antisepsis of rats dorsum). Kruskal-Wallis test was used between groups and inside the same group, at different sample times and the Mann-Whitney test was performed when difference was detected. Results: The NM-Cl 0.25% w/v presented adequate physicochemical characteristics for a nanoemulsion, revealing a more basic pH than FCN and difference between zeta potential of NM-Cl 0.25% w/v and FCN. The NM-Cl 0.25% w/v and CS-Cl 0.5% solutions were more effective on Gram-positive than on Gram-negative bacteria (p≤0.05). NM-Cl 0.25% w/v presented upper antiseptic effect in the microdilution study and residual antiseptic effect was maintained for a longer time when compared to CS-Cl 0.5% (kill curve study). The four-fold (minimal inhibitory concentration) of NM-Cl 0.25% were the formulations with most durable effect within those tested, presenting residual effect until T6 for both bacteria. In the in vivo study, both formulations (NM-Cl 0.25% w/v and CS-Cl 0.5%) had a reduction of the microorganisms in the skin of the rats (p<0.0001) not revealing any difference between the formulations at different times, showing the antiseptic effect of NM-Cl (p≤0.05). Conclusion: Both in vitro and in vivo experiments demonstrated that NM-Cl showed promising future as an antiseptic for cutaneous microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.