Respiratory transmission of SARS-CoV-2 from one older patient to another by airborne mechanisms in hospital and nursing home settings represents an important health challenge during the COVID-19 pandemic. However, the factors that influence the concentration of respiratory droplets and aerosols that potentially contribute to hospital- and nursing care-associated transmission of SARS-CoV-2 are not well understood. To assess the effect of health care professional (HCP) and patient activity on size and concentration of airborne particles, an optical particle counter was placed (for 24 h) in the head position of an empty bed in the hospital room of a patient admitted from the nursing home with confirmed COVID-19. The type and duration of the activity, as well as the number of HCPs providing patient care, were recorded. Concentration changes associated with specific activities were determined, and airway deposition modeling was performed using these data. Thirty-one activities were recorded, and six representative ones were selected for deposition modeling, including patient’s activities (coughing, movements, etc.), diagnostic and therapeutic interventions (e.g., diagnostic tests and drug administration), as well as nursing patient care (e.g., bedding and hygiene). The increase in particle concentration of all sizes was sensitive to the type of activity. Increases in supermicron particle concentration were associated with the number of HCPs (r = 0.66; p < 0.05) and the duration of activity (r = 0.82; p < 0.05), while submicron particles increased with all activities, mainly during the daytime. Based on simulations, the number of particles deposited in unit time was the highest in the acinar region, while deposition density rate (number/cm2/min) was the highest in the upper airways. In conclusion, even short periods of HCP-patient interaction and minimal patient activity in a hospital room or nursing home bedroom may significantly increase the concentration of submicron particles mainly depositing in the acinar regions, while mainly nursing activities increase the concentration of supermicron particles depositing in larger airways of the adjacent bed patient. Our data emphasize the need for effective interventions to limit hospital- and nursing care-associated transmission of SARS-CoV-2 and other respiratory pathogens (including viral pathogens, such as rhinoviruses, respiratory syncytial virus, influenza virus, parainfluenza virus and adenoviruses, and bacterial and fungal pathogens).
Background: Inhalation therapy is a cornerstone of treating patients with chronic obstructive pulmonary disease (COPD). Inhaler types and through-device inhalation parameters influence airway drug delivery. We aimed to measure the repeatability of inhalation performance through four different commercially available inhalers. Methods: We recruited control subjects (n ¼ 22) and patients with stable COPD (S-COPD, n ¼ 16) and during an acute exacerbation (AE-COPD, n ¼ 15). Standard spirometry was followed by through-device inhalation maneuvers using Ellipta Ò , Evohaler Ò , Respimat Ò , and Genuair Ò. Through-device inspiratory vital capacity (IVC d) and peak inspiratory flow (PIF d), as well as inhalation time (t in) and breath hold time (t bh), were recorded and all measurements were repeated in a random manner. Results: There was no difference in forced expiratory volume in 1 second (FEV 1) between patients (S-COPD: 39-5 vs. AE-COPD: 32%-5% predicted, p > 0.05). In controls, the IVC d was significantly reduced by all four devices in comparison with the slight reduction seen in COPD patients. In all subjects, PIF was lowered when inhaling through the devices in order of decreasing magnitude in PIF d : Evohaler, Respimat, Ellipta, and Genuair. The Bland-Altman analysis showed a highly variable coefficient of repeatability for IVC d and PIF d through the different inhalers for all COPD patients. Based on the intermeasurement differences in patients, Respimat and Genuair showed the highest repeatability for IVC d , while Genuair and Ellipta performed superior with regard to PIF d. Conclusions: Our study is the first to compare repeatability of inhalation performances through different inhalers in COPD patients, showing great individual differences for parameters influencing lung deposition of inhaled medication from a given device. Our data provide new insight into the characterization of inhaler use by patients with COPD, and might aid the selection of the most appropriate devices to ensure the adequate and consistent delivery of inhaled drugs.
Aerosol particles proved to play a key role in airborne transmission of SARS-CoV-2 viruses. Therefore, their size-fractionated collection and analysis is invaluable. However, aerosol sampling in COVID departments is not straightforward, especially in the sub-500-nm size range. In this study, particle number concentrations were measured with high temporal resolution using an optical particle counter, and several 8 h daytime sample sets were collected simultaneously on gelatin filters with cascade impactors in two different hospital wards during both alpha and delta variants of concern periods. Due to the large number (152) of size-fractionated samples, SARS-CoV-2 RNA copies could be statistically analyzed over a wide range of aerosol particle diameters (70–10 µm). Our results revealed that SARS-CoV-2 RNA is most likely to exist in particles with 0.5–4 µm aerodynamic diameter, but also in ultrafine particles. Correlation analysis of particulate matter (PM) and RNA copies highlighted the importance of indoor medical activity. It was found that the daily maximum increment of PM mass concentration correlated the most with the number concentration of SARS-CoV-2 RNA in the corresponding size fractions. Our results suggest that particle resuspension from surrounding surfaces is an important source of SARS-CoV-2 RNA present in the air of hospital rooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.