While the number of studies reporting the presence of individual behavioral consistency (animal personality, behavioral syndrome) has boomed in the recent years, there is still much controversy about the proximate and ultimate mechanisms resulting in the phenomenon. For instance, direct environmental effects during ontogeny (phenotypic plasticity) as the proximate mechanism behind the emergence of consistent individual differences in behavior are usually overlooked compared to environmental effects operating across generations (genetic adaptation). Here, we tested the effects of sociality and perceived predation risk during ontogeny on the strength of behavioral consistency in agile frog (Rana dalmatina) tadpoles in a factorial common garden experiment. Tadpoles reared alone and without predatory cues showed zero repeatability within (i.e., lack of personality) and zero correlation between (i.e., lack of syndrome) activity and risk‐taking. On the other hand, cues from predators alone induced both activity and risk‐taking personalities, while cues from predators and conspecifics together resulted in an activity – risk‐taking behavioral syndrome. Our results show that individual experience has an unequivocal role in the emergence of behavioral consistency. In this particular case, the development of behavioral consistency was most likely the result of genotype × environment interactions, or with other words, individual variation in behavioral plasticity.
Summary 19Evolutionary behavioural ecology has recently turned towards understanding the causes 20 and consequences of behavioural consistency, manifesting either as animal personality 21 (consistency in a single behaviour) or behavioural syndrome (consistency across more 22 behaviours). Behavioural type (mean individual behaviour) has been linked to life-history 23 strategies, leading to the emergence of the integrated pace-of-life syndrome (POLS) theory. 24Using Rana dalmatina tadpoles as models, we tested if behavioural consistency and POLS 25 could be detected during early ontogenesis of amphibians. We targeted two ontogenetic 26 stages and measured activity, exploration and risk-taking in a common garden experiment. 27Besides individual behavioural type, we also analysed intra-individual behavioural 28 variation. Activity was consistent in all tadpoles, exploration only became consistent with 29 advancing age, and risk-taking only became consistent in tadpoles that were tested, and 30 thus disturbed, earlier. Only previously tested tadpoles showed trends indicative of 31 behavioural syndromes. We found an activity -age at metamorphosis POLS in the 32 previously untested tadpoles irrespective of age. Relative growth rate correlated positively 33 with the intra-individual variation of activity of the previously untested older tadpoles. In 34 the previously tested older tadpoles, intra-individual variation of exploration correlated 35 negatively and intra-individual variation of risk-taking positively with relative growth rate. 36We provide evidence for behavioural consistency and POLS in predator-and conspecific 37 naive tadpoles. Intra-individual behavioural variation was also correlated to life history, 38 suggesting its relevance for POLS theory. The strong effect of moderate disturbance related 39 to standard behavioural testing on later behaviour draws attention to the pitfalls embedded 40 in repeated testing.
Behavioural consistency within and across behaviours (animal personality and behavioural syndrome, respectively) has been vigorously studied in the last decade, leading to the emergence of "animal personality" research. It has been proposed recently that not only mean behaviour (behavioural type), but the environmentally induced behavioural change (behavioural plasticity) might also differ between individuals within populations. While case studies presenting between-individual variation in behavioural plasticity have started to accumulate, the mechanisms behind its emergence are virtually unknown. We have recently demonstrated that ecologically relevant environmental stimuli during ontogeny are necessary for the development of animal personality and behavioural syndromes. However, it is unknown whether between-individual variation in behavioural plasticity is hard-wired or induced. Here, we tested whether experience with predation during development affected predator-induced behavioural plasticity in Rana dalmatina tadpoles. We ran a common garden experiment with two ontogenetic predation treatments: tadpoles developed from hatching in either the presence or absence of olfactory predator stimuli. Then, we assayed all tadpoles repeatedly for activity and risk-taking both in the absence and presence of olfactory predator stimuli. We found that (a) between-individual variation in predator-induced behavioural plasticity was present only in the group that developed in the presence of olfactory stimuli from predators and (b) previous experience with predatory stimuli resulted in lower plastic response at the group level. The latter pattern resulted from increased between-individual variation and not from universally lower individual responses. We also found that experience with predation during development increased the predictability (i.e. decreased the within-individual variation unrelated to environmental change) of activity, but not risk-taking. In line with this, tadpoles developing under perceived predatory risk expressed their activity with higher repeatability. We suggest that ecologically relevant environmental stimuli are not only fundamental for the development of animal personality and behavioural syndromes, but also for individual variation in behavioural plasticity. Thus, experience is of central importance for the emergence of individual behavioural variation at many levels.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.
Most studies on animal personality evaluate individual mean behaviour to describe individual behavioural strategy, while often neglecting behavioural variability on the within-individual level. However, within-individual behavioural plasticity (variation induced by environment) and within-individual residual variation (regulatory behavioural precision) are recognized as biologically valid components of individual behaviour, but the evolutionary ecology of these components is still less understood. Here, we tested whether behaviour of common pill bugs (Armadillidium vulgare) differs on the among-and within-individual level and whether it is affected by various individual specific state-related traits (sex, size and Wolbachia infection). To this aim, we assayed risk-taking in familiar vs. unfamiliar environments 30 times along 38 days and applied double modelling statistical technique to handle the complex hierarchical structure for both individual-specific trait means and variances. We found that there are significant among-individual differences not only in mean risk-taking behaviour but also in environment-and time-induced behavioural plasticity and residual variation. Wolbachia-infected individuals took less risk than healthy conspecifics; in addition, individuals became more risk-averse with time. Residual variation decreased with time, and individuals expressed higher residual variation in the unfamiliar environment. Further, sensitization was stronger in females and in larger individuals in general. Our results suggest that among-individual variation, behavioural plasticity and residual variation are all (i) biologically relevant components of an individual's behavioural strategy and (ii) responsive to changes in environment or labile state variables. We propose pill bugs as promising models for personality research due to the relative ease of getting repeated behavioural measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.