Floral nectar volume and concentration of ramson (Allium ursinum L. ssp. ucrainicum) were investigated in three different habitats, including two types of sessile oak-hornbeam association on brown forest soil with clay illuviation and a silver lime-flowering ash rock forest association on rendzina. Daily nectar production ranged from 0.1 to 3.8 μL per flower with sugar concentrations of 25 to 50%. Mean nectar volumes and concentrations showed significant differences between freely exposed flowers and covered flowers, which had been isolated from flower visitors 24 h prior to nectar studies. Both the amount and quality of nectar were affected by microclimatic conditions and soil properties and varied between populations at different habitats. In the silver lime-flowering ash rock-forest association mean nectar volumes and concentrations were lower than in a typical sessile oak-hornbeam association on three occasions, the difference being significant in two cases. During full bloom, the date of sampling did not have a profound effect on either nectar volume or concentration.
This paper deals with the forest vegetation of the lower part of the dolines in Mecsek Mts. (South Hungary). In order to characterize this vegetation type, samples were compared to the 6 plant communities occurring in the neighbourhood of the dolines. Considering the vegetation texture and species composition, the vegetation of the dolines resembles mainly the extrazonal beechwoods (Helleboro odori-fagetum) and local ravine forests (Scutellario altissimae-Aceretum) that preserve several mountain, subatlantic relict species in this area. Our study revealed that the plant communities characteristic of the karst surface of Western Mecsek are arranged along a moisture and nutrient gradient. In this system, the habitat conditions of the dolines are similar to those of the beech forests and the local ravine forests, fresh and relatively rich in nutrients. In the karst, dominated by oak-hornbeam and beech forests, effects of the thermal inversion are the most spectacular where beech forests follow turkey oak-sessile oak forests and oak-hornbeam forests on the lower part of the doline slopes. The described vegetation type of these depressions is developed by edafic factors; its identification as a separate association is not supported by the analyses.
There are several harmful and yield decreasing arthropod pests, which live within plant tissues, causing almost unnoticeable damage, e.g. Ostrinia nubilalis Hbn., Cydia pomonella L., Acanthoscelides obtectus Say. Their ecological and biological features are rather known. The process leading to the damage is difficult to trace by means of conventional imaging techniques. In this review, optical techniques-X-ray, computer tomography, magnetic resonance imaging, confocal laser scanning microscopy, infrared thermography, near-infrared spectroscopy and luminescence spectroscopy-are described. Main results can contribute to the understanding of the covert pest life processes from the plant protection perspective. The use of these imaging technologies has greatly improved and facilitated the detailed investigation of injured plants. The results provided additional data on biological and ecological information as to the hidden lifestyles of covertly developing insects. Therefore, it can greatly contribute to the realisation of integrated pest management criteria in practical plant protection.
The diversity of easy-to-study organisms (e.g. vascular plants) is often used as a proxy for the diversity of other organisms whose investigation needs more effort, time and specialist knowledge. Some previous studies have found positive relationships between plant and macrofungal diversity and thus support this approach, while others question this practice. Our aim was to explore the possibility of using plant diversity as surrogate for macrofungal diversity in the forests of the Pannonian ecoregion. A total of 19 permanent plots in north-east Hungary were sampled for vascular plants and macrofungi. The effect on macrofungal abundance and diversity, of plant evenness and richness as well as degradation level was tested using generalized linear models. Species richness of macrofungi assemblages proved to be independent of the diversity and naturalness of vascular plant communities; however, there was congruence in the composition of the two communities. In contrast to diversity, macrofungi abundance was significantly negatively correlated to plant species richness. There was a hump-backed relationship between the abundance of terricolous macrofungi and the degradation level estimated on the basis of the occurrence of vascular plants, although degradation did not influence the abundance of lignicolous macrofungi. Our results question the reliability of decisions on nature conservation actions based on a few groups of easy-to-observe organisms, and underline the necessity of studying as wide a range of taxonomic groups as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.