Background After the spread of COVID-19 pneumonia, chest CT examination was used as a substantial non-invasive complement to RT-PCR for diagnosing and as a rapid screening tool when RT-PCR results are unavailable. Our study aimed at the analysis of the lung abnormalities detected by chest CT in COVID-19 pneumonia according to the severity and duration of symptoms. Results In the early phase (n = 60), 32 patients had negative CT findings and 28 patients had positive findings with a mean total lung severity score of 2.13. In the intermediate phase (n = 116), 4 patients had negative CT findings and 112 patients had positive findings with a mean total lung severity score of 16.08. In the late phase (n = 36), all patients had positive findings with a mean total lung severity score of 17.83. CT lung abnormalities were progressed on follow-up CT studies. We found a high total lung severity score in many patients with mild symptoms with a mean of 14.77 and a low total lung severity score in many patients with moderate to severe symptoms with a mean of 9.14. Conclusion Chest CT should be used as a routine examination for diagnosing COVID-19 pneumonia and follow-up of disease advance. The progression of lung abnormalities was related to the duration more than the severity of symptoms.
Background The recent pandemic of COVID‐19 has thrown the world into chaos due to its high rate of transmissions. This study aimed to highlight the encountered CT findings in 910 patients with COVID-19 pneumonia in Egypt including the mean severity score and also correlation between the initial CT finding and the short-term prognosis in 320 patients. Results All patients had confirmed COVID-19 infection. Non-contrast CT chest was performed for all cases; in addition, the correlation between each CT finding and disease severity or the short-term prognosis was reported. The mean age was higher for patients with unfavorable prognosis (P < 0.01). The patchy pattern was the most common, found in 532/910 patients (58.4%), the nodular pattern was the least common 123/910 (13.5%). The diffuse pattern was reported in 124 (13.6%). The ground glass density was the most common reported density in the study 512/910 (56.2%). The crazy pavement sign was reported more frequently in patients required hospitalization or ICU and was reported in 53 (56.9%) of patients required hospitalization and in 29 (40.2%) patients needed ICU, and it was reported in 11 (39.2%) deceased patients. Air bronchogram was reported more frequently in patients with poor prognosis than patients with good prognosis (16/100; 26% Vs 12/220; 5.4%). The mean CT severity score for patients with poor prognosis was 15.2. The mean CT severity score for patients with good prognosis 8.7., with statistically significant difference (P = 0.001). Conclusion Our results confirm the important role of the initial CT findings in the prediction of clinical outcome and short-term prognosis. Some signs like subpleural lines, halo sign, reversed halo sign and nodular shape of the lesions predict mild disease and favorable prognosis. The crazy paving sign, dense vessel sign, consolidation, diffuse shape and high severity score predict more severe disease and probably warrant early hospitalization. The high severity score is most important in prediction of unfavorable prognosis. The nodular shape of the lesions is the most important predictor of good prognosis.
Background Cardiomyopathy is a myocardial disease, which usually demonstrates improper ventricular morphology, function, or both. It is classified into two classes based on the organ involved. Primary cardiomyopathy is confined mainly to the myocardium and can be genetic, non-genetic, or acquired. Secondary cardiomyopathy is caused by generalized systemic disorder. Myocardial fibrosis produces abnormal myocardial stiffness and increases arrhythmias risk. Native T1-mapping is an innovative technique that provides quantitative assessment of edema, diffuse myocardial fibrosis, and inflammation in a number of disease states. Furthermore native T1 mapping provides a future method for quantifying myocardial fibrosis in advanced chronic kidney disease and dialysis patients without the use of gadolinium-based contrast agents. So our aim is to assess the potential value of segmental quantification of myocardial fibrosis using native T1 mapping in different types of cardiomyopathy in comparison to late gadolinium enhancement (LGE) imaging. Results The native T1 values of a total 1152 segments (16 segments in 72 patients of cardiomyopathy), 192 segments in 12 patients with hypertrophic cardiomyopathy (HCM), 800 segments in 50 patients with dilated cardiomyopathy (DCM), 80 segments in 5 patients with infiltrative cardiomyopathy, and 80 segments in 5 patients with non-compaction were assessed. These were compared with 160 segments of 10 healthy volunteers. Native T1 values were significantly higher in most of myocardial segments with LGE than in those without including the control group; non-contrast T1 values in mid LV septal segments were found the most significant (1130.85 ± 79.79 ms vs 1047.74 ± 42.74 ms; P = 0.001). Also the current study showed T1 values were significantly higher than normal even in segments unaffected by LGE (P<0.01) in both HCM and DCM groups. A receiver operating characteristic (ROC) analysis revealed the required cutoff value of 1070 ms for detecting myocardial fibrosis with a sensitivity 66% and specificity of 68%. Conclusion Contrast-free T1-mapping is a new technique for detecting myocardial fibrosis objectively with a high diagnostic performance especially in patients who cannot afford gadolinium contrast agents as patients with end-stage renal disease.
Background The recent pandemic of COVID‐19 has thrown the world into chaos due to its high rate of transmissions. Recently viewed neurological manifestations among hospitalized Egyptian patients with COVID‐19 in quarantine centres. Ataxia, disturbed consciousness and convulsions should be further evaluated by MRI and MRS for CNS involvement by SARS‐CoV‐2. How COVID-19 targeting the CNS is still under study, as it is difficult to predict which diagnostic neurological tests will be used to identify high-risk COVID19 patients. MR spectroscopy represents a non-invasive in vivo diagnostic technique for evaluation of metabolic profile of the brain and can reveal important information about the underlying pathologies. Multiple recent reports in the medical literature had confirmed the neurological complications in COVID-19 infection, though few studies has reported the MR spectroscopic findings in these patients. This cross-sectional study aimed to use MRI and MR spectroscopic findings for evaluation of the neurological manifestation of Egyptian COVID‐19 patients. Results Ninety-one male and twenty-seven female met the inclusion criteria, with a mean age of 52 years ± 10 (SD) (age range; 12–78 years). The commonest neurological manifestations were disturbed conscious level (82.2%). The most common MRI findings were acute ischemic insult with/without haemorrhagic areas (42.3%), demyelinating patches of altered signal intensity (31.3%). Sixty cases who had haemorrhagic areas were excluded to perform MRS due to contamination of the spectra by blood component. However, the remaining 67 patients had NAA reduction, choline elevation, glutamate/glutamine and lactate elevation in short TE35, with mean of NAA/Cr ratio = 1.04 ± 0.14, Choline/Cr = 0.49 ± 0.04 and Glx/Cr = 1.56 ± 0.22. Conclusions During the current pandemic of COVID-19, radiologists should be aware of wide spectrum of MRI and MRS findings of COVID-19-related CNS involvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.