Automated segmentation of brain tumors using Magnetic Resonance Imaging (MRI) data is critical in the analysis and monitoring of disease development. As a result, gliomas are aggressive and diverse tumors that may be split into intra-tumoral groups by using effective and accurate segmentation methods. It is intended to extract characteristics from an image using the Gray Level Co-occurrence (GLC) matrix feature extraction method described in the proposed work. Using Convolutional Neural Networks (CNNs), which are commonly used in biomedical image segmentation, CNNs have significantly improved the precision of the state-of-the-art segmentation of a brain tumor. Using two segmentation networks, a U-Net and a 3D CNN, we present a major yet easy combinative technique that results in improved and more precise estimates. The U-Net and 3D CNN are used together in this study to get better and more accurate estimates of what is going on. Using the dataset, two models were developed and assessed to provide segmentation maps that differed fundamentally in terms of the segmented tumour sub-region. Then, the estimates was made by two separate models that were put together to produce the final prediction. In comparison to current state-of-the-art designs, the precision (percentage) was 98.35, 98.5, and 99.4 on the validation set for tumor core, enhanced tumor, and whole tumor, respectively.
Nowadays, the 5G parameters play an eminent role in the massive Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system for enriching high signal to noise ratio (SNR). 5G application has emerged in the role of artificial intelligence for involving the reduction of Peak to Average Power Ratio (PAPR) and Bit Error Rate (BER). In MIMO – OFDM system, the high PAPR is a tremendous drawback during the transmission of bit symbol with the number of sub-carriers in the signal. To avoid Intercarrier Interference (ICI) during transmission of the number of sub-carriers, the Omar Pigeon Space-Time (OPST) algorithm is implemented. Then, to overcome high PAPR in the uplink, the Hybrid Space-Time - Hadamard matrix (HST-HM) techniques are proposed and the Bit Error Rate (BER) is decreased abruptly. 5G parameters and specifications are incorporated in this OPST algorithm for avoiding interference during the data bit transmission in the MIMO – OFDM system. Realtors Property Resource (RPR) mobile app is developed for an experimental display of the information that occurs in the real-time uplink MIMO – OFDM system. Thus, the descriptive analysis and simulated results of PAPR, SNR, and BER are executed using the proposed system of HST with HM in the 5G Communication. The RPR mobile executes the outcomes through the OPST algorithm with a better system performance of the MIMO-OFDM system based on the 5G.
<abstract> <p>A wide variety of applications like patient monitoring, rehabilitation sensing, sports and senior surveillance require a considerable amount of knowledge in recognizing physical activities of a person captured using sensors. The goal of human activity recognition is to identify human activities from a collection of observations based on the behavior of subjects and the surrounding circumstances. Movement is examined in psychology, biomechanics, artificial intelligence and neuroscience. To be specific, the availability of pervasive devices and the low cost to record movements with machine learning (ML) techniques for the automatic and quantitative analysis of movement have resulted in the growth of systems for rehabilitation monitoring, user authentication and medical diagnosis. The self-regulated detection of human activities from time-series smartphone sensor datasets is a growing study area in intelligent and smart healthcare. Deep learning (DL) techniques have shown enhancements compared to conventional ML methods in many fields, which include human activity recognition (HAR). This paper presents an improved wolf swarm optimization with deep learning based movement analysis and self-regulated human activity recognition (IWSODL-MAHAR) technique. The IWSODL-MAHAR method aimed to recognize various kinds of human activities. Since high dimensionality poses a major issue in HAR, the IWSO algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR technique uses a hybrid DL model for activity recognition. To further improve the recognition performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental evaluation of the IWSODL-MAHAR approach is assessed on benchmark activity recognition data. The experimental outcomes outlined the supremacy of the IWSODL-MAHAR algorithm compared to recent models.</p> </abstract>
Clustering plays a fundamental task in the process of data mining, which remains more demanding due to the ever-increasing dimension of accessible datasets. Big data is considered more populous as it has the ability to handle various sources and formats of data under numerous highly developed technologies. This paper devises a robust and effective optimization-based Internet of Things (IoT) routing technique, named Student Psychology Based Optimization (SPBO) -based routing for the big data clustering. When the routing phase is done, big data clustering is carried out using the Deep Fractional Calculus-Improved Invasive Weed Optimization fuzzy clustering (Deep FC-IIWO fuzzy clustering) approach. Here, the Mapreduce framework is used to minimizing the over fitting issues during big data clustering. The process of feature selection is performed in the mapper phase in order to select the major features using Minkowski distance, whereas the clustering procedure is carried out in the reducer phase by Deep FC-IIWO fuzzy clustering, where the FC-IIWO technique is designed by the hybridization of Improved Invasive Weed Optimizer (IIWO) and Fractional Calculus (FC). The developed SPBO-based routing approach achieved effective performance in terms of energy, clustering accuracy, jaccard coefficient, rand coefficient, computational time and space complexity of 0.605 J, 0.935, 0.947, 0.954, 2100.6 s and 72KB respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.