Abstract. Traitor tracing schemes were introduced to combat the typical piracy scenario whereby pirate decoders (or access control smartcards) are manufactured and sold by pirates to illegal subscribers. Those traitor tracing schemes, however, are ineffective for the currently less common scenario where a pirate publishes the periodical access control keys on the Internet or, alternatively, simply rebroadcasts the content via an independent pirate network. This new piracy scenario may become especially attractive (to pirates) in the context of broadband multicast over the Internet. In this paper we consider the consequences of this type of piracy and offer countermeasures. We introduce the concept of dynamic traitor tracing which is a practical and efficient tool to combat this type of piracy.
We describe a framework for automatically selecting a summary set of photos from a large collection of geo-referenced photographs. Such large collections are inherently difficult to browse, and become excessively so as they grow in size, making summaries an important tool in rendering these collections accessible. Our summary algorithm is based on spatial patterns in photo sets, as well as textual-topical patterns and user (photographer) identity cues. The algorithm can be expanded to support social, temporal, and other factors. The summary can thus be biased by the content of the query, the user making the query, and the context in which the query is made.A modified version of our summarization algorithm serves as a basis for a new map-based visualization of large collections of geo-referenced photos, called Tag Maps. Tag Maps visualize the data by placing highly representative textual tags on relevant map locations in the viewed region, effectively providing a sense of the important concepts embodied in the collection.An initial evaluation of our implementation on a set of geo-referenced photos shows that our algorithm and visualization perform well, producing summaries and views that are highly rated by users.
Data collected nowadays by social-networking applications create fascinating opportunities for building novel services, as well as expanding our understanding about social structures and their dynamics. Unfortunately, publishing socialnetwork graphs is considered an ill-advised practice due to privacy concerns. To alleviate this problem, several anonymization methods have been proposed, aiming at reducing the risk of a privacy breach on the published data, while still allowing to analyze them and draw relevant conclusions.In this paper we introduce a new anonymization approach that is based on injecting uncertainty in social graphs and publishing the resulting uncertain graphs. While existing approaches obfuscate graph data by adding or removing edges entirely, we propose using a finer-grained perturbation that adds or removes edges partially: this way we can achieve the same desired level of obfuscation with smaller changes in the data, thus maintaining higher utility. Our experiments on real-world networks confirm that at the same level of identity obfuscation our method provides higher usefulness than existing randomized methods that publish standard graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.