Groundwater forms the basis of water supplies across much of Africa and its development is rising as demand for secure water increases. Recharge rates are a key component for assessing groundwater development potential, but have not been mapped across Africa, other than from global models. Here we quantify long-term average (LTA) distributed groundwater recharge rates across Africa for the period 1970–2019 from 134 ground-based estimates and upscaled statistically. Natural diffuse and local focussed recharge, where this mechanism is widespread, are included but discrete leakage from large rivers, lakes or from irrigation are excluded. We find that measurable LTA recharge is found in most environments with average decadal recharge depths in arid and semi-arid areas of 60 mm (30–140 mm) and 200 mm (90–430 mm) respectively. A linear mixed model shows that at the scale of the African continent only LTA rainfall is related to LTA recharge—the inclusion of other climate and terrestrial factors do not improve the model. Kriging methods indicate spatial dependency to 900 km suggesting that factors other than LTA rainfall are important at local scales. We estimate that average decadal recharge in Africa is 15 000 km3 (4900–45 000 km3), approximately 2% of estimated groundwater storage across the continent, but is characterised by stark variability between high-storage/low-recharge sedimentary aquifers in North Africa, and low-storage/high-recharge weathered crystalline-rock aquifers across much of tropical Africa. African water security is greatly enhanced by this distribution, as many countries with low recharge possess substantial groundwater storage, whereas countries with low storage experience high, regular recharge. The dataset provides a first, ground-based approximation of the renewability of groundwater storage in Africa and can be used to refine and validate global and continental hydrological models while also providing a baseline against future change.
Abstract. Impacts of climate and land cover changes on streamflow were assessed using a hydrological modeling. The precipitation runoff modeling system of the US Geological Survey was modified in order to consider wetlands as a separate hydrological response unit. Initial model parameters were obtained from a previously modeled adjacent catchment and subsequent calibration and validation were carried out. The model calibration and validation periods were divided into three. The calibration period was a five years period (1981)(1982)(1983)(1984)(1985)(1986)). The validation period was divided into two: validation 1 (1986-1991) and validation 2 (1996-2002). Model performance was evaluated by using joint plots of daily and monthly observed and simulated runoff hydrographs and different coefficients of efficiency. The model coefficients of efficiency were 0.71 for the calibration period and 0.69 and 0.66 for validation periods 1 and 2, respectively. A "delta-change" method was used to formulate climatic scenarios. One land cover change scenario was also used to assess the likely impacts of these changes on the runoff. The results of the scenario analysis showed that the basin is more sensitive to increase in rainfall (+80% for +20%) than to a decrease (−62% for −20%). The rainfall elasticity is 4:1 for a 20% increase in rainfall while it is 3:1 for a 20% reduction. A 1.5 • c increase in temperature resulted in a 6% increase in potential evapotranspiration and 13% decrease in streamflow. This indicates that the watershed is more elastic to rainfall increase than temperature. The proposed land cover scenario of converting areas between 2000 to 3000 m a.s.l. to woodland also resulted in a significant decrease in streamflow (11.8%). The study showed that properly calibrated and validated models could help understand likely impacts of climate and land cover changes on catchment water balance.
Knowledge of the source of water in the Lagos coastal basin (LCB) groundwater system was to be found vital to the future development and management of the system. Stable and radioactive isotopic measurements have been employed to unravel the source of recharge and residence time of the shallow groundwater system, based on the sampling conducted in 2016 and 2017 on groundwater, surface water and rainfall. The concentration of tritium in the groundwater samples were very low and ranged from less than 1 to 2.8 TU, while measured 14C contents ranged from 59.1 to 88 pMC. The δ18O values of groundwater samples ranged from 4.81 and 3.98 ‰, while the δ2H values ranged from -24.75 and -19.70 ‰ for the wet and dry seasons, respectively. The obtained results indicated non-existence of paleo recharge; rather all groundwater in the basin were found to be essentially of meteoric origin with intermittent surface water contributions. Moreover, shallow groundwater and surface water have considerable variations in isotopic compositions, reflecting evaporation and preservation of seasonal fluctuation. Though there was an observed generally low tritium content, however, it proved useful in the identification of recent active recharge taking place across the basin. The deduced radiocarbon age reflected the presence of “modern water” and thus supports the presence of present recharge to the groundwater system. Therefore, the source of the shallow groundwater recharge was actively renewable particularly during the wet season and thus water exploitation is potentially sustainable in the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.