The DNA-binding transcription factor Suppressor of Hairless [Su(H)] functions as an activator during Notch (N) pathway signaling, but can act as a repressor in the absence of signaling. Hairless (H), a novel Drosophila protein, binds to Su(H) and has been proposed to antagonize N signaling by inhibiting DNA binding by Su(H). Here we show that, in vitro, H directly binds two corepressor proteins, Groucho (Gro) and dCtBP. Reduction of gro or dCtBP function enhances H mutant phenotypes and suppresses N phenotypes in the adult mechanosensory bristle. This activity of gro is surprising, because it is directed oppositely to its traditionally defined role as a neurogenic gene. We find that Su(H)-H complexes can bind to DNA with high efficiency in vitro. Furthermore, a H-VP16 fusion protein causes dominant-negative phenotypes in vivo, a result consistent with the proposal that H functions in transcriptional repression. Taken together, our findings indicate that "default repression" of N pathway target genes by an unusual adaptor/corepressor complex is essential for proper cell fate specification during Drosophila peripheral nervous system development.
Short interfering RNAs (siRNAs) directed against poliovirus and other viruses effectively inhibit viral replication. Although RNA interference (RNAi) may provide the basis for specific antiviral therapies, the limitations of RNAi antiviral strategies are ill defined. Here, we show that poliovirus readily escapes highly effective siRNAs through unique point mutations within the targeted regions. Competitive analysis of the escape mutants provides insights into the basis of siRNA recognition. The RNAi machinery can tolerate mismatches but is exquisitely sensitive to mutations within the central region and the 3 end of the target sequence. Indeed, specific mutations in the target sequence resulting in G:U mismatches are sufficient for the virus to escape siRNA inhibition. However, using a pool of siRNAs to simultaneously target multiple sites in the viral genome prevents the emergence of resistant viruses. Our study uncovers the elegant precision of target recognition by the RNAi machinery and provides the basis for the development of effective RNAi-based therapies that prevent viral escape.
Changes in gene regulatory networks are a major engine for creating developmental novelty during evolution. Conversely, regulatory linkages that survive for very long evolutionary periods might be characteristic of ancient and abstract functions of fundamental utility to all metazoans. The proneural genes, which encode a distinctive family of basic helix-loop-helix (bHLH) transcriptional activators, act to promote neural cell fates in the ectoderm of diverse species. Here we report that these genes have been associated for at least 600-700 million years--since before the cnidarian/bilaterian divergence--with a high-affinity binding site for Hairy/Enhancer of split (Hes) repressor proteins. We suggest that the systematic identification of such ancient and conserved connections will be a powerful means of uncovering the primordial functions of transcription factors and signaling systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.