Halide semiconductors stand at the very beginning of semiconductor science and technology. CuI was reported as the first transparent conductor, and the first field effect transistor was made from KBr. Although halogens are frequently used in semiconductor preparation, little use is currently made from halide semiconductors in electronics and photonics. We review past reports on the metal halide semiconductor CuI and related alloys and discuss recent progress with regard to this material including its use in organic electronics and solar cells as well as our own work on fully transparent bipolar heterostructure diodes (p‐CuI/n‐ZnO) with high rectification of several 107 and ideality factors down to 1.5.
γ‐CuI(111) thin film on glass (1 × 1 cm2) and IV‐characteristics of p‐CuI/n‐ZnO/a‐Al2O3 bipolar heterojunction diode.
Cuprous iodide has been investigated since 1907 when Karl Bädeker prepared this material from metallic copper thin films with subsequent iodization and reported it as fully transparent conductor. Nowadays CuI is recognized as p‐type wide bandgap, transparent semiconductor, offering rather high hole mobilities of so far up to 10 Vs∕cm2 in thin films. The charge carrier density is primarily controlled via the amount of copper vacancies. CuI has been prepared as bulk material and substrate and thin film as well as in the form of various nanostructures. Thin films can be prepared by various techniques including iodization of copper and by thermal evaporation, sputtering or pulsed laser deposition of CuI. Recent progress is represented by the epitaxy on other semiconductors, in particular zinc oxide. CuI has found use as intermediate layer between ITO and organic absorbers in solar cells. Recently, bipolar heterostructure diodes prepared from p‐CuI∕n‐ZnO layers on sapphire were found to exhibit very high rectification. This makes CuI interesting for use in transparent electronics. For further details see the Review Article by M. Grundmann et al. on pp. http://doi.wiley.com/10.1002/pssa.201329349.
Heteroepitaxy can involve materials with a misfit of crystal structure. Rotation domains in the epilayer are a fundamental consequence. We derive a general expression for their (minimum) number which is determined by the mismatch of the rotational symmetries of the substrate and epilayer. In the case of a mismatch of rotational symmetry, the number of rotation domains of material A on material B is different from that of B on A. A larger number of rotation domains can occur due to domain structure or nearly fulfilled additional symmetries of the substrate surface.
Co3O4, ZnFe2O4, CoFe2O4, ZnCo2O4, and Fe3O4 thin films were fabricated by pulsed laser deposition at high and low temperatures resulting in crystalline single‐phase normal, inverse, as well as disordered spinel oxide thin films with smooth surface morphology. The dielectric function, determined by spectroscopic ellipsometry in a wide spectral range from 0.5 to 8.5 eV, is compared with the magneto‐optical response of the dielectric tensor, investigated by magneto‐optical Kerr effect spectroscopy in the spectral range from 1.7 to 5.5 eV with an applied magnetic field of 1.7 T. Crystal field, inter‐valence, and inter‐sublattice charge transfer transitions, and transitions from O2p to metal cation 3d or 4s bands are identified in both the principal diagonal elements and the magneto‐optically active off‐diagonal elements of the dielectric tensor. Depending on the degree of cation disorder, resulting in local symmetry distortion, the magneto‐optical response is found to be strongest for high crystal quality inverse spinels and for disordered normal spinel structure, contrary to the first principle studies of CoFe2O4 and ZnFe2O4. The results presented provide a basis for deeper understanding of light–matter interaction in this material system that is of vital importance for device‐related phenomena and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.