The rapidly growing supplement industry operates without a formal premarket approval process. Consumers rely on product labels to be accurate and true. Those products containing live microbials report both identity and viability on most product labels. This study used next-generation sequencing technology as an analytical tool in conjunction with classic culture methods to examine the validity of the labels on supplement products containing live microbials found in the United States marketplace. Our results show the importance of testing these products for identity, viability, and potential contaminants, as well as introduce a new culture-independent diagnostic approach for testing these products.
BackgroundThe gene content of a diverse group of 183 unique Escherichia coli and Shigella isolates was determined using the Affymetrix GeneChip® E. coli Genome 2.0 Array, originally designed for transcriptome analysis, as a genotyping tool. The probe set design utilized by this array provided the opportunity to determine the gene content of each strain very accurately and reliably. This array constitutes 10,112 independent genes representing four individual E. coli genomes, therefore providing the ability to survey genes of several different pathogen types. The entire ECOR collection, 80 EHEC-like isolates, and a diverse set of isolates from our FDA strain repository were included in our analysis.ResultsFrom this study we were able to define sets of genes that correspond to, and therefore define, the EHEC pathogen type. Furthermore, our sampling of 63 unique strains of O157:H7 showed the ability of this array to discriminate between closely related strains. We found that individual strains of O157:H7 differed, on average, by 197 probe sets. Finally, we describe an analysis method that utilizes the power of the probe sets to determine accurately the presence/absence of each gene represented on this array.ConclusionsThese elements provide insights into understanding the microbial diversity that exists within extant E. coli populations. Moreover, these data demonstrate that this novel microarray-based analysis is a powerful tool in the field of molecular epidemiology and the newly emerging field of microbial forensics.
We report here the genome sequences of 55 strains belonging to the genus Escherichia from multiple animal and environmental sources. These strains include representatives of Escherichia albertii, Escherichia fergusonii, and six additional genetically distinct lineages of Escherichia spp., one of which is newly discovered and is being reported for the first time here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.