Death receptor agonist therapies have exhibited limited clinical benefit to date. Investigations into why Apo2L/TRAIL and AMG 655 preclinical data were not predictive of clinical response revealed that coadministration of Apo2L/TRAIL with AMG 655 leads to increased antitumor activity in vitro and in vivo. The combination of Apo2L/TRAIL and AMG 655 results in enhanced signaling and can sensitize Apo2L/TRAIL-resistant cells. Structure determination of the Apo2L/TRAIL-DR5-AMG 655 ternary complex illustrates how higher order clustering of DR5 is achieved when both agents are combined. Enhanced agonism generated by combining Apo2L/TRAIL and AMG 655 provides insight into the limited efficacy observed in previous clinical trials and suggests testable hypotheses to reconsider death receptor agonism as a therapeutic strategy.
In mammalian cells, the aurora kinases (aurora-A, -B, and -C) play essential roles in regulating cell division.
A structural analog, 5'-{[(Z)4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL 73811), of decarboxy S-adenosyl-L-methionine, the product of the reaction catalyzed by S-adenosyl-L-methionine (AdoMet) decarboxylase (DC), was found to inhibit Trypanosoma brucei brucei AdoMet DC. The inhibition was time dependent (T.s, 0.3 min), exhibited pseudo-first-order kinetics (Ki, 1.5 ,uM), and was apparently irreversible.The natural substrate of the reaction, AdoMet, protected the enzyme from inactivation, suggesting that MDL 73811 was directed at the enzyme active site and was probably catalytically activated. Administration of MDL 73811 to T. b. brucei-infected rats resulted in rapid inhibition of AdoMet DC activity, a decrease in spermidine, and an increase in putrescine in the trypanosomes isolated from treated rats. Treatment of T. b. brucei-infected mice with MDL 73811 (20 mg/kg of body weight intraperitoneally twice daily for 4 days) resulted in cures of the trypanosome infections. Additionally, drug-resistant T. brucei rhodesiense infections in mice were cured by either a combination of MDL 73811 (50 mg/kg intraperitoneally three times per day for 5 days) and relatively low oral doses of a-difluoromethylornithine or MDL 73811 (50 mg/kg per day for 7 days) administered alone in implanted miniosmotic pumps. These data suggest that MDL 73811 and, perhaps, other inhibitors of AdoMet DC have potential for therapeutic use in various forms of African trypanosomiasis.
In eukaryotic cells, cyclin-dependent kinase (CDK) complexes regulate the temporal progression of cells through the cell cycle. Deregulation in the cell cycle is an essential component in the evolution of cancer. Here, we validate CDK1 and CDK2 as potential therapeutic targets using novel selective smallmolecule inhibitors of cyclin B1/CDK1 and cyclin E2/CDK2 enzyme complexes (CDKi). Flow cytometry-based methods were developed to assess intracellular retinoblastoma (Rb) phosphorylation to show inhibition of the CDK pathway. Tumor cells treated with CDK inhibitors showed an overall decrease in cell proliferation, accumulation of cells in G 1 and G 2 , and apoptosis in a cell line-specific manner. Although CDK inhibitors activate p53, the inhibitors were equipotent in arresting the cell cycle in isogenic breast and colon tumor cells lacking p53, suggesting the response is independent of p53. In vivo, the CDK inhibitors prevented the growth of colon and prostate tumors, blocked proliferation of tumor cells, and inhibited Rb phosphorylation. The discovery and evaluation of novel potent and selective CDK1 and CDK2 inhibitors will help delineate the role that CDK complexes play in regulating tumorigenesis. (Cancer Res 2006; 66(8): 4299-308)
We reported recently that administration of ([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine (MDL 73811), an enzyme-activated irreversible inhibitor of S-adenosyl-L-methionine decarboxylase (AdoMetDC; EC 4.1.1.50), a key enzyme in the synthesis of spermidine, cures African trypanosome infections in mice. The precise mechanism of action of MDL 73811 was not clear because a rapid disappearance of trypanosomes from the bloodstream of treated rats occurred before significant depletion of spermidine. Administration of MDL 73811 to Trypanosoma brucei brucei-infected rats resulted in a 70% decrease in parasitaemia within 1 h and a complete disappearance of parasites by 5 h. The reduction in parasitaemia was accompanied by complete inhibition of AdoMetDC activity by 10 min after injection of MDL 73811; inhibition was sustained for at least 4 h. Polyamine levels in trypanosomes were unaffected during the first 1 h in which the marked decrease in parasitaemia was observed, but parasite AdoMet levels increased 20-fold within this time. In contrast, exposure of cultured mammalian cells to MDL 73811 resulted in only a 1.5-2-fold increase in AdoMet levels over a 6 h time course. Experiments with inhibitors of ornithine decarboxylase (ODC) also suggested that the increased AdoMet levels might be an important factor for antitrypanosomal efficacy. Trypanosomes taken from rats treated for 36 h with eflornithine, an inhibitor of ODC, were depleted of putrescine and had markedly decreased spermidine levels. These organisms also had less than 10% of control AdoMetDC activity, and had elevated decarboxy AdoMet (greater than 4000-fold) and AdoMet (up to 50-fold) levels. The methyl ester of alpha-monofluromethyl-3,4-dehydro-ornithine (delta-MFMO-CH3), which cures murine T. b. brucei infections, and the ethyl ester analogue of this compound (delta-MFMO-C2H5), which does not cure this infection, become ODC inhibitors upon hydrolysis and thus were tested for their effects on trypanosomal polyamines, AdoMet and decarboxy AdoMet levels. Although both esters of delta-MFMO depleted trypanosomal polyamines, AdoMet and decarboxy AdoMet levels were elevated in T. b. brucei from infected mice treated with delta-MFMO-CH3 but not in parasites from mice treated with the delta-MFMO-C2H5. These data suggest that inhibition of AdoMetDC, either directly with MDL 73811 or indirectly with inhibitors of ODC, apparently leads to a trypanosome-specific elevation of AdoMet. It is possible that major changes in AdoMet, rather than changes in polyamines, may be responsible for the antitrypanosomal effects of these drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.