The structure of Ge(105)-(1 x 2) grown on Si(105) is examined by scanning tunneling microscopy (STM) and first-principles calculations. The morphology evolution with an increasing amount of Ge deposited documents the existence of a tensile surface strain in Si(105) and its relaxation with increasing coverage of Ge. A detailed analysis of high-resolution STM images and first-principles calculations produce a new stable model for the Ge(105)-(1 x 2) structure formed on the Si(105) surface that includes the existence of surface strain. It corrects the model developed from early observations of the facets of "hut" clusters grown on Si(001).
Two epoxy resins containing degradable acetal linkages were synthesized by the reaction of cresol novolak-type phenolic resin (CN) with vinyl ethers containing a glycidyl group [cyclohexane dimethanol vinyl glycidyl ether (CHDMVG) and 4-vinyloxybutyl glycidyl ether (VBGE). Carbon fiberreinforced plastics (CFRPs) were prepared by heating laminated prepreg sheets with CN-CHDMVG resin (derived from CN and CHDMVG) and CN-VBGE resin (derived from CN and VBGE), in which carbon fibers are impregnated with epoxy resins containing curing agents [dicyandiamide (DICY)] and curing accelerator [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)]. CN-CHDMVG-based CFRPs and CN-VBGE-based CFRPs exhibited almost the same tensile strength as the conventional bisphenol-A-based CFRPs. CN-CHDMVG-based CFRPs andCN-VBGE-based CFRPs underwent smooth breakdown with the treatment of hydrochloric acid in tetrahydrofuran at room temperature for 24 h to regenerate strands of carbon fibers. The surface conditions of the recovered carbon fibers had little changes during degradation and recovery processes on the basis of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The recovered carbon fibers exhibited almost the same tensile strength as virgin carbon fibers and hence would be reused for the production of CFRPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.