The aim of this study was to scan through several biomaterials to find an optimal biomaterial to support the growth of cardiomyocytes. Neonatal rat cardiomyocytes were cultured on polylactide, chitosan, poly (1,8-octanediolco-citric acid), copolymer of poly(ethylene oxide terephthalate) and poly (butylene terephthalate), PuraMatrix™ and collagen. The suitability of biomaterials for cardiomyocyte culture was evaluated based on several parameters. The cells were characterized with time-lapse imaging, immunocytochemistry and LIVE/DEAD ® staining. Collagen gel was the best biomaterial. It supported well the growth, survival and functionality of the cardiomyocytes. Polylactide and chitosan membranes supported the cell growth and survival, but these biomaterials were too stiff for further cardiac applications. In conclusion, collagen gel is a good biomaterial to obtain a 3D structure to model heart tissue.
The migration to smaller geometries has translated to an increase in the number of transistors possible in each integrated circuit. Failure analysis of such complex circuits presents a major challenge to the semiconductor industry and is a driving force behind the considerable interest in nondestructive, cost-efficient, “shortcut” fault isolation techniques. In this paper, we present the application of thermal-induced voltage alteration (TIVA) for failure analysis of 0.11µm technology memory devices and demonstrate the key aspects of this technique. The back side TIVA results are compared with analysis performed using back side emission microscopy (EMMI), and the limitations of EMMI are highlighted. The advantages and limitations of the TIVA technique are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.