Optical skyrmions have recently been constructed by tailoring vectorial near-field distributions through the interference of multiple surface plasmon polaritons, offering promising features for advanced information processing, transport and storage. Here, we provide experimental demonstration of electromagnetic skyrmions based on magnetic localized spoof plasmons (LSP) showing large topological robustness against continuous deformations, without stringent external interference conditions. By directly measuring the spatial profile of all three vectorial magnetic fields, we reveal multiple π-twist target skyrmion configurations mapped to multi-resonant near-equidistant LSP eigenmodes. The real-space skyrmion topology is robust against deformations of the meta-structure, demonstrating flexible skyrmionic textures for arbitrary shapes. The observed magnetic LSP skyrmions pave the way to ultra-compact and robust plasmonic devices, such as flexible sensors, wearable electronics and ultra-compact antennas.
Electron spin plays important roles in determining the physical and chemical properties of matter. However, measurements of electron spin are of poor quality, impeding the development of material sciences, because the spin polarimeter has a low efficiency. Here, we show an imaging-type exchange-scattering spin polarimeter with 6786 channels and an 8.5×10^{-3} single channel efficiency. As a demonstration, the fine spin structure of the electronic states in bismuth (111) is investigated, for which strong Rashba-type spin splitting behavior is seen in both the bulk and surface states. This improvement paves the way to study novel spin related phenomena with unprecedented accuracy.
A VUV beamline at SSRF for ARPES measurements are designed. To increase the resolution and bulk sensitivity, the photon energy as low as 7 eV is desired. Because the reflectivity for p-polarized photons strongly decreases when the photon energy is below 30 eV, the design of high flux beamline for low energy VUV photons is a challenge. This work shows a variable including angle VLPGM with varied grating depth (VGD) which can achieve both high resolution and high flux with broad energy coverage.
The magnetic field configuration of the previously proposed knot undulator [Qiao et al. (2009). Rev. Sci. Instrum. 80, 085108] is realised in the design of a hybridized elliptically polarized undulator, which is presented. Although the details of the field distribution are not the same as those in the theoretical proposal, it is demonstrated that the practical knot undulator could work perfectly. In order to understand the minor discrepancies of the two, mathematical formulae of the synchrotron radiation are derived based on the Fourier transform of the magnetic field. From the results of calculations by simulation program, the discrepancies could be well interpreted by the corresponding formulae. The results show the importance of optimization of the end sections of the knot undulator to suppress the on-axis heat load. Furthermore, a study of the impact of the undulator on beam dynamics of the storage ring was conducted using the Shanghai Synchrotron Radiation Facility as an example and the results show that the knot undulator has little effect on the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.