Small unmanned aerial systems (UAS) have emerged as high-throughput platforms for the collection of high-resolution image data over large crop fields to support precision agriculture and plant breeding research. At the same time, the improved efficiency in image capture is leading to massive datasets, which pose analysis challenges in providing needed phenotypic data. To complement these high-throughput platforms, there is an increasing need in crop improvement to develop robust image analysis methods to analyze large amount of image data. Analysis approaches based on deep learning models are currently the most promising and show unparalleled performance in analyzing large image datasets. This study developed and applied an image analysis approach based on a SegNet deep learning semantic segmentation model to estimate sorghum panicles counts, which are critical phenotypic data in sorghum crop improvement, from UAS images over selected sorghum experimental plots. The SegNet model was trained to semantically segment UAS images into sorghum panicles, foliage and the exposed ground using 462, 250 × 250 labeled images, which was then applied to field orthomosaic to generate a field-level semantic segmentation. Individual panicle locations were obtained after post-processing the segmentation output to remove small objects and split merged panicles. A comparison between model panicle count estimates and manually digitized panicle locations in 60 randomly selected plots showed an overall detection accuracy of 94%. A per-plot panicle count comparison also showed high agreement between estimated and reference panicle counts (Spearman correlation ρ = 0.88, mean bias = 0.65). Misclassifications of panicles during the semantic segmentation step and mosaicking errors in the field orthomosaic contributed mainly to panicle detection errors. Overall, the approach based on deep learning semantic segmentation showed good promise and with a larger labeled dataset and extensive hyper-parameter tuning, should provide even more robust and effective characterization of sorghum panicle counts.
Background. N6-methyladenosine (m6A) is the most common internal modification present in mRNAs and long noncoding RNAs (lncRNAs), associated with tumorigenesis and cancer progression. However, little is known about the roles of m6A and its regulatory genes in nonsmall cell lung cancer (NSCLC). Here, we systematically explored the roles and prognostic significance of m6A-associated regulatory genes in NSCLC. Methods. The copy number variation (CNV), mutation, mRNA expression data, and corresponding clinical pathology information of 1057 NSCLC patients were downloaded from the cancer genome atlas (TCGA) database. The gain and loss levels of CNVs were determined by utilizing segmentation analysis and GISTIC algorithm. The GSEA was conducted to explore the functions related to different levels of m6A regulatory genes. Logrank test was utilized to assess the prognostic significance of m6A-related gene’s CNV. Results. The genetic alterations of ten m6A-associated regulators were identified in 102 independent NSCLC samples and significantly related to advanced tumor stage. Deletions or shallow deletions corresponded to lower mRNA expression while copy number gains or amplifications were related to increased mRNA expression of m6A regulatory genes. Survival analysis showed the patients with copy number loss of FTO with worse disease-free survival (DFS) or overall survival (OS). Besides, copy number loss of YTHDC2 was also with poor OS for NSCLC patients. Moreover, high FTO expression was significantly associated with oxidative phosphorylation, translation, and metabolism of mRNA. Conclusion. Our findings provide novel insight for better understanding of the roles of m6A regulators and RNA epigenetic modification in the pathogenesis of NSCLC.
The rock mass is one of the key parameters in engineering design. Accurate rock mass classification is also essential to ensure operational safety. Over the past decades, various models have been proposed to evaluate and predict rock mass. Among these models, artificial intelligence (AI) based models are becoming more popular due to their outstanding prediction results and generalization ability for multiinfluential factors. In order to develop an easy-to-use rock mass classification model, support vector machine (SVM) techniques are adopted as the basic prediction tools, and three types of optimization algorithms, i.e., particle swarm optimization (PSO), genetic algorithm (GA) and grey wolf optimization (GWO), are implemented to improve the prediction classification and optimize the hyper-parameters. A database was assembled, consisting of 80 sets of real engineering data, involving four influencing factors. The three combined models are compared in accuracy, precision, recall, F1 value and computational time. The results reveal that among three models, the GWO-SVC-based model shows the best classification performance by training. The accuracy of training and testing sets of GWO-SVC are 90.6250% (58/64) and 93.7500% (15/16), respectively. For Grades I, II, III, IV and V, the precision value is 1, 0.93, 0.90, 0.92, 0.83, the recall value is 1, 1, 0.93, 0.73, 0.83, and the F1 value is 1, 0.96, 0.92, 0.81, 0.83, respectively. Sensitivity analysis is performed to understand the influence of input parameters on rock mass classification. It shows that the sensitive factor in rock mass quality is the RQD. Finally, the GWO-SVC is employed to assess the quality of rocks from the southeastern ore body of the Chambishi copper mine. Overall, the current study demonstrates the potential of using artificial intelligence methods in rock mass assessment, rendering far better results than the previous reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.