To our knowledge, ours is the first study to show that APMs and ML algorithms may help assess surgical RARP performance and predict clinical outcomes. With further accrual of clinical data (oncologic and functional data), this process will become increasingly relevant and valuable in surgical assessment and training.
As part of the PhysioNet / Computing in Cardiology Challenge 2016, this work focuses on automatic classification of normal / abnormal phonocardiogram (PCG) recording, with the aim of quickly identifying subjects that need further expert diagnosis. To improve the robustness of the classifiers by increasing the number of training samples, the recordings were windowed into 5 second segments and our classifiers were trained to classify these segments. Overall recording classification was then generated using a voting scheme from classification results of its segments. Our features include spectrograms and Melfrequency cepstrum coefficients. Our best submission result during the official phase (evaluated on a random 20% of the hidden test set) has a score of 0.813, with 0.735 sensitivity and 0.892 specificity. Two more submissions are still being evaluated.
PURPOSE Unplanned health care encounters (UHEs) such as emergency room visits can occur commonly during cancer chemotherapy treatments. Patients at an increased risk of UHEs are typically identified by clinicians using performance status (PS) assessments based on a descriptive scale, such as the Eastern Cooperative Oncology Group (ECOG) scale. Such assessments can be bias prone, resulting in PS score disagreements between assessors. We therefore propose to evaluate PS using physical activity measurements (eg, energy expenditure) from wearable activity trackers. Specifically, we examined the feasibility of using a wristband (band) and a smartphone app for PS assessments. METHODS We conducted an observational study on a cohort of patients with solid tumor receiving highly emetogenic chemotherapy. Patients were instructed to wear the band for a 60-day activity-tracking period. During clinic visits, we obtained ECOG scores assessed by physicians, coordinators, and patients themselves. UHEs occurring during the activity-tracking period plus a 90-day follow-up period were later compiled. We defined our primary outcome as the percentage of patients adherent to band-wear ≥ 80% of 10 am to 8 pm for ≥ 80% of the activity-tracking period. In an exploratory analysis, we computed hourly metabolic equivalent of task (MET) and counted 10 am to 8 pm hours with > 1.5 METs as nonsedentary physical activity hours. RESULTS Forty-one patients completed the study (56.1% female; 61.0% age 40-60 years); 68% were adherent to band-wear. ECOG score disagreement between assessors ranged from 35.3% to 50.0%. In our exploratory analysis, lower average METs and nonsedentary hours, but not higher ECOG scores, were associated with higher 150-day UHEs. CONCLUSION The use of a wearable activity tracker is generally feasible in a similar population of patients with cancer. A larger randomized controlled trial should be conducted to confirm the association between lower nonsedentary hours and higher UHEs.
PURPOSE Performance status (PS) is a key factor in oncologic decision making, but conventional scales used to measure PS vary among observers. Consumer-grade biometric sensors have previously been identified as objective alternatives to the assessment of PS. Here, we investigate how one such biometric sensor can be used during a clinic visit to identify patients who are at risk for complications, particularly unexpected hospitalizations that may delay treatment or result in low physical activity. We aim to provide a novel and objective means of predicting tolerability to chemotherapy. METHODS Thirty-eight patients across three centers in the United States who were diagnosed with a solid tumor with plans for treatment with two cycles of highly emetogenic chemotherapy were included in this single-arm, observational prospective study. A noninvasive motion-capture system quantified patient movement from chair to table and during the get-up-and-walk test. Activity levels were recorded using a wearable sensor over a 2-month period. Changes in kinematics from two motion-capture data points pre- and post-treatment were tested for correlation with unexpected hospitalizations and physical activity levels as measured by a wearable activity sensor. RESULTS Among 38 patients (mean age, 48.3 years; 53% female), kinematic features from chair to table were the best predictors for unexpected health care encounters (area under the curve, 0.775 ± 0.029) and physical activity (area under the curve, 0.830 ± 0.080). Chair-to-table acceleration of the nonpivoting knee ( t = 3.39; P = .002) was most correlated with unexpected health care encounters. Get-up-and-walk kinematics were most correlated with physical activity, particularly the right knee acceleration ( t = −2.95; P = .006) and left arm angular velocity ( t = −2.4; P = .025). CONCLUSION Chair-to-table kinematics are good predictors of unexpected hospitalizations, whereas the get-up-and-walk kinematics are good predictors of low physical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.