Extracellular plaques of β-amyloid (Aβ) and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer's disease (AD). Plaques comprise Aβ fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of AD. Despite the significance of plaques to AD, oligomers are considered to be the principal toxic forms of Aβ 1,2 . Interestingly, many adverse responses to Aβ, such as cytotoxicity 3 , microtubule loss 4 , impaired memory and learning 5 , and neuritic degeneration 6 , are greatly amplified by tau expression. N-terminally truncated, pyroglutamylated (pE) forms of Aβ 7,8 are strongly associated with AD, are more toxic than Aβ 1-42 and Aβ , and have been proposed as initiators of AD Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms * Correspondence: gsb4g@virginia.edu. **Correspondence: Hans-Ulrich.Demuth@probiodrug.de. J.M.N and S.S. contributed equally to the paper.Full Methods and relevant references will be available in the online Supplementary Information accompanying this paper at http:// www.nature.com/nature.Author Contributions: J.M.N. performed most of the biochemical and cell biological experiments; S.S. was the principal force behind the experiments involving hAPP SL /hQC and TBA2.1/tau KO mice, and was aided by B.H.-P., H.C.; A.S. and T.W. fractionated and analyzed human brain extracts; E.S., K.Y. and B.W. performed the peri-hippocampal injection experiments; A.H. and C.G.G. produced and characterized the M64 and M87 antibodies; R.R. and K.R. performed the electrophysiology experiments; A.A., W.J. and S.G. performed and analyzed the immunohistochemical experiments on TBA2.1 and Tau-KO/TBA2.1 mice; G.S.B. and H.-U.D. initiated and directed the project; G.S.B. was the principal writer of the paper; all of the authors participated in the design and analysis of experiments, and in editing of the paper. Fig. 2) to the oligomers. HHS Public AccessAt 5 μM peptide, 5% pE-Aβ aggregated faster than Aβ 3(pE)-42 or Aβ 1-42 alone based on thioflavin T fluorescence shifts 15 ( Supplementary Fig. 3). The OD 450 /OD 490 ratio for Aβ 3(pE)-42 rose and peaked more rapidly than for Aβ 1-42 , but peaked at an ~25% lower level. The fastest rise in the OD 450 /OD 490 ratio was for 5% pE-Aβ, which peaked similarly to Aβ 3(pE)-42 . Aβ 3(pE)-42 , Aβ 1-42 and 5% pE-Aβ thus oligomerized by different pathways.To test whether distinct biological activities were coupled to these oligomerization differences, we compared cytotoxicity of the peptides towards cultured neurons or glia using calcein-AM and fluorescence microscopy 16 . Twelve hours of Aβ 1-42 exposure had little effect on cell viability for wild type (WT) or tau knockout (KO) neurons, or WT glial cells (Fig. 1a). Contrastingly, most WT neurons died and detached from the substrate after exposur...
Candida albicans is the most common human fungal pathogen and can cause life-threatening infections. Filamentous growth is critical in the pathogenicity of C. albicans, as the transition from yeast to hyphal forms is linked to virulence and is also a pivotal process in fungal biofilm development. Homeodomain-containing transcription factors have been linked to developmental processes in fungi and other eukaryotes. We report here on GRF10, a homeobox transcription factor-encoding gene that plays a role in C. albicans filamentation. Deletion of the GRF10 gene, in both C. albicans SN152 and BWP17 strain backgrounds, results in mutants with strongly decreased hyphal growth. The mutants are defective in chlamydospore and biofilm formation, as well as showing dramatically attenuated virulence in a mouse infection model. Expression of the GRF10 gene is highly induced during stationary phase and filamentation. In summary, our study emphasizes a new role for the homeodomain-containing transcription factor in morphogenesis and pathogenicity of C. albicans.
Candida albicans is a commensal and a common constituent of the human microbiota; however, it can become pathogenic and cause infections in both immunocompetent and immunocompromised people. C. albicans exhibits remarkable metabolic versatility as it can colonize multiple body sites as a commensal or pathogen. Understanding how C. albicans adapts metabolically to each ecological niche is essential for developing novel therapeutic approaches. Purine metabolism has been targeted pharmaceutically in several diseases; however, the regulation of this pathway has not been fully elucidated in C. albicans. Here, we report how C. albicans controls the AMP de novo biosynthesis pathway in response to purine availability. We show that the lack of the transcription factors Grf10 and Bas1 leads to purine metabolic dysfunction, and this dysfunction affects the ability of C. albicans to establish infections.
Metabolic adaptation and morphogenesis are essential for Candida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host. C. albicans utilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits in C. albicans.
Morphogenesis and stress adaptation are key attributes that allow fungal pathogens to thrive and infect human hosts. During infection, many fungal pathogens undergo morphological changes, and this ability is highly linked to virulence. Furthermore, pathogenic fungi have developed multiple antioxidant defenses to cope with the host-derived oxidative stress produced by phagocytes. Glutathione is a major antioxidant that can prevent cellular damage caused by various oxidative stressors. While the role of glutathione in stress detoxification is known, studies of the glutathione system in fungal morphological switching and virulence are lacking. This review explores the role of glutathione metabolism in fungal adaptation to stress, morphogenesis, and virulence. Our comprehensive analysis of the fungal glutathione metabolism reveals that the role of glutathione extends beyond stressful conditions. Collectively, glutathione and glutathione-related proteins are necessary for vitality, cellular development and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.