Filippi syndrome (MIM #272440), one of the craniodigital syndromes, is a rare genetic entity with autosomal recessive inheritance and characterized by pre‐ and postnatal growth retardation, microcephaly, distinctive facial appearance, developmental delay/intellectual disability, and variable syndactylies of the fingers and toes. In this report, a further female patient of Filippi syndrome who additionally had a unilateral congenital talipes equinovarus (CTEV), a feature not previously recorded, is described. Genetic testing revealed a novel homozygous frameshift pathogenic variant (c.552_555delCAAA, p.Asn184Lysfs*8) in CKAP2L and thus confirmed the diagnosis of Filippi syndrome. We hope that the newly recognized feature (CTEV) will contribute to expand the clinical spectrum of this extremely rare condition. In view of the paucity of reported cases, the full spectrum of clinical findings of Filippi syndrome necessitates obviously further affected individuals/pedigrees delineation in order to elucidate the etiological and phenotypic aspects of this orphan disease appropriately.
<b><i>Introduction:</i></b> Grange syndrome (OMIM 602531) is characterized by a constellation of symptoms of hypertension, stenosis, or occlusion of different arteries (including the cerebral, renal, abdominal, and coronary vessels) with a variable occurrence of brachysyndactyly, bone fragility, and congenital heart defects. Learning disabilities were also reported in some cases. Biallelic pathogenic variants in <i>YY1AP1</i> are associated with the syndrome. Only 14 individuals with this ultra-rare syndrome (12 of them were molecularly confirmed) have hitherto been reported in the literature. <b><i>Case Presentation:</i></b> We herein describe a 1<sup>1/2</sup>-year-old additional female case of Grange syndrome with hypertension, patent ductus arteriosus, and brachysyndactyly who was subsequently confirmed to carry a novel homozygous frameshift variant (c.2291del; p.Pro764Leufs*12) in the <i>YY1AP1</i> gene through whole-exome sequencing. <b><i>Conclusion:</i></b> This report extends the allelic spectrum in Grange syndrome and helps provide insight into the potential role of YY1AP1 in the regulation of cellular processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.