Feature correspondence selection, which aims to seek as many true matches (i.e., inliers) as possible from a given putative set while minimizing false matches (i.e., outliers), is crucial to many feature-matching based tasks in computer vision. It remains a challenging problem how to deal with putative sets with low inlier ratios. To address this problem, in this paper, we propose a novel correspondence selection strategy, which is guided by Grid-based Motion Statistics (GMS). We first adopt the GMS to generate a small correspondence set with a high inlier ratio. Then, an accurate geometric model is built using the above correspondence set. Finally, the built geometric model is used to filter the given putative correspondence set to obtain true correspondences. The experimental results on benchmark datasets demonstrate that our proposed approach outperforms the state-of-the-art approaches for putative sets with various inlier ratios, especially for cases with low inlier ratios. INDEX TERMS Correspondence selection, grid-based motion statistics (GMS), geometric model, outlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.