Large scale molecular dynamics simulations for bidisperse nanoparticle suspensions with an explicit solvent are used to investigate the effects of evaporation rates and volume fractions on the nanoparticle distribution during drying. Our results show that "small-on-top" stratification can occur when Pe ϕ ≳ c with c ∼ 1, where Pe is the Péclet number and ϕ is the volume fraction of the smaller particles. This threshold of Pe ϕ for "small-on-top" is larger by a factor of ∼α than the prediction of the model treating solvent as an implicit viscous background, where α is the size ratio between the large and small particles. Our simulations further show that when the evaporation rate of the solvent is reduced, the "small-on-top" stratification can be enhanced, which is not predicted by existing theories. This unexpected behavior is explained with thermophoresis associated with a positive gradient of solvent density caused by evaporative cooling at the liquid/vapor interface. For ultrafast evaporation the gradient is large and drives the nanoparticles toward the liquid/vapor interface. This phoretic effect is stronger for larger nanoparticles, and consequently the "small-on-top" stratification becomes more distinct when the evaporation rate is slower (but not too slow such that a uniform distribution of nanoparticles in the drying film is produced), as thermophoresis that favors larger particles on the top is mitigated. A similar effect can lead to "large-on-top" stratification for Pe ϕ above the threshold when Pe is large but ϕ is small. Our results reveal the importance of including the solvent explicitly when modeling evaporation-induced particle separation and organization and point to the important role of density gradients brought about by ultrafast evaporation.
We study non-local correlations in a three-orbital Hubbard model defined on an extended onedimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U , as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbitaland spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that the self-energy for the itinerant electrons is momentum dependent, indicating a degree of non-local correlations while the localized electrons have largely momentum independent self-energies. These non-local correlations also produce relative shifts of the hole-like and electron-like bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally-ordered insulating phase.
A potential strategy for controlling stratification in a drying suspension of bidisperse particles is studied using molecular dynamics simulations. When the suspension is maintained at a constant temperature during fast drying, it can exhibit "small-on-top" stratification with an accumulation (depletion) of smaller (larger) particles in the top region of the drying film, consistent with the prediction of current theories based on diffusiophoresis. However, when only the region near the substrate is thermalized at a constant temperature, a negative temperature gradient develops in the suspension because of evaporative cooling at the liquid-vapor interface. Since the associated thermophoresis is stronger for larger nanoparticles, a higher fraction of larger nanoparticles migrate to the top of the drying film at fast evaporation rates. As a result, stratification is converted to "large-on-top". Very strong "small-on-top" stratification can be produced with a positive thermal gradient in the drying suspension. Here we explore a way to produce a positive thermal gradient by thermalizing the vapor at a temperature higher than that of the solvent. Possible experimental approaches to realize various thermal gradients in a suspension undergoing solvent evaporation, and thus to produce different stratification states in the drying film, are suggested. arXiv:1810.01384v2 [cond-mat.soft]
We systematically study the meniscus on the outside of a small circular cylinder vertically immersed in a liquid bath in a cylindrical container that is coaxial with the cylinder. The cylinder has a radius R much smaller than the capillary length, κ, and the container radius, L, is varied from a small value comparable to R to ∞. In the limit of L≪κ, we analytically solve the general Young-Laplace equation governing the meniscus profile and show that the meniscus height, Δh, scales approximately with Rln(L/R). In the opposite limit where L≫κ,Δh becomes independent of L and scales with Rln(κ/R). We implement a numerical scheme to solve the general Young-Laplace equation for an arbitrary L and demonstrate the crossover of the meniscus profile between these two limits. The crossover region has been determined to be roughly 0.4κ≲L≲4κ. An approximate analytical expression has been found for Δh, enabling its accurate prediction at any values of L that ranges from microscopic to macroscopic scales.
Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here, we exploit a measurement-device-independent (MDI) quantum network, over a 200square-kilometer metropolitan area, to perform a field test of a three-party measurement-device-independent quantum digital signature (MDI-QDS) scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10 −7 . Remarkably, our work demonstrates the feasibility of MDI-QDS for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.