Fish consumption is a major pathway for mercury exposure in humans. Current guidelines and risk assessments assume that 100% of methylmercury (MeHg) in fish is absorbed by the human body after ingestion. However, a growing body of literature suggests that this absorption rate may be overestimated. We used an in vitro digestion method to measure MeHg bioaccessibility in commercially-purchased fish, and investigated the effects of dietary practices on MeHg bioaccessibility. Cooking had the greatest effect, decreasing bioaccessibility on average to 12.5±5.6%. Polyphenol-rich beverages also significantly reduced bioaccessibility to 22.7±3.8% and 28.6±13.9%, for green and black tea respectively. We confirmed the suspected role of polyphenols in tea as being a driver of MeHg's reduced bioaccessibility, and found that epicatechin, epigallocatechin gallate, rutin and cafeic acid could individually decrease MeHg bioaccessibility by up to 55%. When both cooking and polyphenol-rich beverage treatments were combined, only 1% of MeHg remained bioaccessible. These results call for in vivo validation, and suggest that dietary practices should be considered when setting consumer guidelines for MeHg. More realistic risk assessments could promote consumption of fish as a source of fatty acids, which can play a protective role against cardiovascular disease.
Uptake of the neurotoxicant monomethylmercury (MeHg) from fish and marine mammals continues to present a public health concern in Canada and elsewhere. However, fish and marine mammals are key diet items contributing to food security for some Indigenous populations in Canada. Mercury (Hg) exposure is estimated assuming that 100% of Hg is methylated, that 100% will be absorbed by the consumer and that cooking does not affect MeHg concentrations. Some of these assumptions do not correspond to our current state of knowledge. The aim of this study was to assess the impact of additional variables on Hg exposure equation using probabilistic risk analysis. New variables tested were (1) the proportion of methylated Hg compared to total Hg (pMeHg, %), (2) the relative absorption factor (RAF, %) expressed as bioaccessibility and (3) the mass loss factor (MLF, unitless) that represents the loss of moisture during cooking, known to increase MeHg concentration in fish and mammals. For the new variables, data from literature were used in order to set point estimate values that were further used in the probabilistic risk analysis. Modelling results for both fish and marine mammals indicate that adding these new variables significantly influenced estimates of MeHg exposure (Mood’s median test, p < 0.05). This study highlights that the evaluation of exposure to MeHg is sensitive to pMeHg, RAF and MLF, and the inclusion of these variables in risk assessment should be considered with care. Further research is needed to provide better food-dependent, population-specific estimates of RAF and MLF before formal inclusion in exposure estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.