Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K(-1) m(-1), which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.
Doped silicon nanoparticles were exposed to air and sintered to form nanocrystalline silicon. The composition, microstructure, and structural defects were investigated with TEM, XRD, and PDF and the lattice dynamics was evaluated with measurements of the heat capacity, of the elastic constants with resonant ultrasound spectroscopy and of the density of phonon states (DPS) with inelastic neutron scattering. The results were combined and reveal that the samples contain a large amount of silicon dioxide and exhibit properties that deviate from bulk silicon. Both in the reduced DPS and in the heat capacity a Boson peak at low energies, characteristic of amorphous SiO 2 , is observed. The thermal conductivity is strongly reduced due to nanostructuration and the incorporation of impurities.
PACS 23.20.Lv-γ transitions and level energies PACS 29.30.Kv-X-and γ-ray spectroscopy PACS 63.20.D-Phonon states and bands, normal modes, and phonon dispersion Abstract-We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125 Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12) ns and 35493.12(30) eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.